Aerosol Transmission through Stress Corrosion Crack-Like Geometries

U.S. Nuclear Waste Technical Review Board
Winter 2022 Board Meeting (Virtual)
March 1-2, 2022

Sandia National Laboratories
Sam Durbin, Phil Jones, Jesse Phillips, Ramon Pulido, and Hector Mendoza
Andrew Casella and Mark Lanza
Pacific Northwest National Laboratory

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.
This is a technical presentation that does not take into account the contractual limitations or obligations under the Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (Standard Contract) (10 CFR Part 961). For example, under the provisions of the Standard Contract, spent nuclear fuel in multi-assembly canisters is not an acceptable waste form, absent a mutually agreed to contract amendment.

To the extent discussions or recommendations in this presentation conflict with the provisions of the Standard Contract, the Standard Contract governs the obligations of the parties, and this presentation in no manner supersedes, overrides, or amends the Standard Contract.

This presentation reflects technical work which could support future decision making by DOE. No inferences should be drawn from this presentation regarding future actions by DOE, which are limited both by the terms of the Standard Contract and Congressional appropriations for the Department to fulfill its obligations under the Nuclear Waste Policy Act including licensing and construction of a spent nuclear fuel repository.
Objective

- Mimic aerosol transport through a stress corrosion crack (SCC) in a spent nuclear fuel (SNF) canister
 - Pressure-driven flow
 - Prototypic canister pressures
 - Near-prototypic canister volume
- Explore flow rates and aerosol retention of an engineered microchannel
 - Characteristic dimensions similar to those of SCCs
 - Slot orifice (rectangular cross-section)
 - Divergent nozzle – linear transition from inner to outer characteristic crack dimensions
- Measure mass flow and aerosol concentration
 - Upstream and downstream of microchannel
 - Simplified geometry with well-controlled boundary conditions

Source: www.nrc.gov/waste/spent-fuel-storage/diagram-typical-dry-cask-system.html
Collaborative Modeling and Testing

- Andy Casella
- GOTHIC modeling
 - Aerosol deposition in canister (planned work)
 - 1-D compressible flow model for SCC

- Sam Durbin
- CFD internal flows (Fred Gelbard)
- MELCOR modeling (Jesse Phillips)
 - Aerosol deposition in canister
- Aerosol transmission testing (this presentation)

- Yadu Sasikumar
 - Previous efforts by Stylianos Chatzidakis
 - 1st principles modeling of aerosol transport/depletion in microchannels
Aerodynamic Equivalent Diameter (AED)

• Size of a particle with equivalent diameter of spherical particle with $\rho_o = 1$ g/cm3

 – Shape factor (χ) for irregular particles
 • Generally ignored for consequence analyses (Assume $\chi = 1$)

 – Conversion factor

$$\sqrt{\frac{\rho}{\rho_o \chi}} \approx \sqrt{\frac{10 \text{ g/cc}}{1 \text{ g/cc}}} = 3.2, \text{ for spent fuel}$$

Irregular particle

d$_e$ = 3 μm
ρ = 10 g/cc
χ = 1.4

Aerodynamic equivalent sphere

AED = 8 μm
ρ_o = 1 g/cc

$V_{TS} = 1.9$ mm/s
Respirable Particles

- Respirable particles conservatively chosen as particles smaller than 10 μm AED
 - Enter and deposit in alveoli
 - Relatively long residence time
- Large particles (> 10 μm) may enter respiratory system
 - More easily expelled
 - Relatively short residence time

American Conference of Governmental Industrial Hygienists (ACGIH), 1997 Threshold Limit Values and Biological Exposure Indices, ACGIH, Cincinnati, OH (1997).
Aerosol Transmission Results

- Transmission of aerosols ↓ as $MMD_o ↑$
 - Transmission ranged from ~0.1 to 0.6 over entire test series
 - Air or helium as carrier gas

- SCC simulated with linearly diverging microchannel
 - Upstream to downstream transition
 - 13 to 25 µm
 - Simulated crack acts as flow restrictor and filter
Initial Aerosol Density

- Respirable particles with an aerodynamic equivalent diameter (AED) < 10 μm
- Respirable release fraction = 8.9×10^{-6}
- Estimate hypothetical aerosol density available for transport
 - 37 PWRs
 - 520 kg UO₂ per assembly
 - Assume 1% fuel rod failure
 - Assume no deposition
 - Initial pressure 800 kPa (116 psia)
 - Average gas temperature 460 K (187 °C)
 - Assume canister free volume of 6 m³
 - Reference conditions: 101 kPa, 298 K
 - Reference aerosol density: $0.01 \times 37 \text{ PWRs} \times 5.20 \times 10^8 \frac{\text{mg}}{\text{PWR}} \times 8.9 \times 10^{-6} \approx 54 \text{ mg/m}^3 = C_{m, \text{STP, Ref.}}$
Surrogate Selection

• Cerium oxide (CeO₂) chosen as surrogate
 \[\rho_{\text{CeO}_2} = 7.22 \text{ g/cm}^3 \]
 \[\rho_{\text{SNF}} \approx 10 \text{ g/cm}^3 \text{ (Spent fuel)} \]

• Particle size distribution
 – Mass median diameter (MMD)
 • MMD = 2.4 \mu m
 – Geometric standard deviation (GSD)
 • GSD = 1.9
 – ~75% particles (by mass) respirable
 • AED < 10 \mu m
Engineered Microchannel

- Microchannel formed with paired blocks
 - High-precision gage blocks
 - Electrical discharge machined to form channel
 - Dimensions
 - Flow length: 8.86 mm (0.349 in.) long
 - Channel width: 12.7 mm (0.500 in.) wide
 - Channel height:
 - Linearly diverging from 13 to 25 µm
- Bolted together to form microchannel
- Replaceable test section
 - Ultimately conduct experiments with representative SCCs

![Isometric view of mounted microchannel on upstream side](image-url)
Test System Photograph

- **Exhaust**
- **Test section**
- **Palas Promo 3000 HP**
- **240-gal storage tank**
- **2 in. ball valve**
- **Mass flow meter**
- **HEPA filter**
- **Downstream aerosol sensor**
- **Microchannel mount**
- **Upstream pressurized aerosol sensor**
Flow Visualization of Microchannel Flow

- Flow visualization of downstream flow by rearrangement of hardware
 - Mounting flange reversed
 - Mounted on upstream nipple
 - Downstream nipple removed
- Upward vectored jet observed at the flow midplane
 - Microchannel mounted on bottom half
 - Possible sensitivity to mounting orientation
 - Full mixing expected with downstream test section installed
Air Testing

<table>
<thead>
<tr>
<th>Date</th>
<th>Test Type</th>
<th>ΔP_o (kPa)</th>
<th>C_m (mg/m3)</th>
<th>MMD (µm)</th>
<th>GSD (--</th>
<th>Integrated Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/11/2021</td>
<td>Blowdown</td>
<td>119</td>
<td>19</td>
<td>1.4</td>
<td>1.8</td>
<td>0.47</td>
</tr>
<tr>
<td>5/6/2021</td>
<td>Blowdown</td>
<td>120</td>
<td>34</td>
<td>1.7</td>
<td>1.8</td>
<td>0.39</td>
</tr>
<tr>
<td>6/13/2021</td>
<td>Blowdown</td>
<td>415</td>
<td>25</td>
<td>1.7</td>
<td>2.0</td>
<td>0.55</td>
</tr>
<tr>
<td>6/12/2021</td>
<td>Blowdown</td>
<td>418</td>
<td>81</td>
<td>1.8</td>
<td>1.9</td>
<td>0.61</td>
</tr>
<tr>
<td>4/29/2021</td>
<td>Blowdown</td>
<td>716</td>
<td>20</td>
<td>1.7</td>
<td>2.1</td>
<td>0.47</td>
</tr>
<tr>
<td>6/2/2021</td>
<td>Blowdown</td>
<td>717</td>
<td>34</td>
<td>1.9</td>
<td>2.1</td>
<td>0.40</td>
</tr>
<tr>
<td>6/3/2021</td>
<td>Blowdown</td>
<td>723</td>
<td>44</td>
<td>2.0</td>
<td>2.0</td>
<td>0.44</td>
</tr>
<tr>
<td>6/8/2021</td>
<td>Blowdown</td>
<td>717</td>
<td>79</td>
<td>1.9</td>
<td>1.9</td>
<td>0.36</td>
</tr>
<tr>
<td>5/4/2021</td>
<td>Blowdown</td>
<td>717</td>
<td>81</td>
<td>2.0</td>
<td>2.0</td>
<td>0.50</td>
</tr>
<tr>
<td>4/28/2021</td>
<td>Blowdown</td>
<td>717</td>
<td>108</td>
<td>2.1</td>
<td>2.1</td>
<td>0.26</td>
</tr>
<tr>
<td>6/1/2021</td>
<td>Blowdown</td>
<td>717</td>
<td>115</td>
<td>2.2</td>
<td>2.0</td>
<td>0.40</td>
</tr>
<tr>
<td>6/9/2021</td>
<td>Blowdown</td>
<td>717</td>
<td>123</td>
<td>2.1</td>
<td>1.9</td>
<td>0.36</td>
</tr>
<tr>
<td>5/3/2021</td>
<td>Blowdown</td>
<td>717</td>
<td>134</td>
<td>2.2</td>
<td>2.2</td>
<td>0.28</td>
</tr>
<tr>
<td>5/26/2021</td>
<td>Blowdown</td>
<td>717</td>
<td>141</td>
<td>2.4</td>
<td>2.1</td>
<td>0.31</td>
</tr>
<tr>
<td>6/10/2021</td>
<td>Constant Press.</td>
<td>717</td>
<td>25</td>
<td>1.7</td>
<td>1.9</td>
<td>0.41</td>
</tr>
<tr>
<td>6/7/2021</td>
<td>Constant Press.</td>
<td>714</td>
<td>89</td>
<td>2.1</td>
<td>2.0</td>
<td>0.33</td>
</tr>
<tr>
<td>6/4/2021</td>
<td>Constant Press.</td>
<td>716</td>
<td>119</td>
<td>2.2</td>
<td>2.1</td>
<td>0.35</td>
</tr>
</tbody>
</table>

- 17 air tests
 - Mostly blowdowns
 - MMD$_o$ range from 1.4 to 2.4 µm
 - Aerosol mass transmission range from 0.26 to 0.61
 - Average aerosol mass transmission = 0.41
Helium Testing

- **13 helium tests**
 - Mostly blowdowns
 - MMD₀ range from 1.7 to 3.5 µm
 - Aerosol mass transmission range from ~0.12 to 0.47
 - Average aerosol mass transmission = 0.26

<table>
<thead>
<tr>
<th>Date</th>
<th>Test Type</th>
<th>(\Delta P_o) (kPa)</th>
<th>(C_m) (mg/m(^3))</th>
<th>MMD (µm)</th>
<th>GSD (--</th>
<th>Integrated Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/25/2021</td>
<td>Blowdown</td>
<td>418</td>
<td>36</td>
<td>2.3</td>
<td>1.9</td>
<td>0.32</td>
</tr>
<tr>
<td>6/24/2021</td>
<td>Blowdown</td>
<td>417</td>
<td>121</td>
<td>2.8</td>
<td>1.9</td>
<td>0.26</td>
</tr>
<tr>
<td>6/30/2021</td>
<td>Constant Press.</td>
<td>417</td>
<td>61</td>
<td>2.6</td>
<td>2.0</td>
<td>0.37</td>
</tr>
<tr>
<td>6/29/2021</td>
<td>Constant Press.</td>
<td>418</td>
<td>114</td>
<td>2.5</td>
<td>2.0</td>
<td>0.27</td>
</tr>
<tr>
<td>7/13/2021</td>
<td>Blowdown</td>
<td>716</td>
<td>43</td>
<td>1.7</td>
<td>2.0</td>
<td>0.47</td>
</tr>
<tr>
<td>6/28/2021</td>
<td>Blowdown</td>
<td>717</td>
<td>75</td>
<td>2.9</td>
<td>1.9</td>
<td>0.23</td>
</tr>
<tr>
<td>6/20/2021</td>
<td>Blowdown</td>
<td>739</td>
<td>83</td>
<td>2.5</td>
<td>1.9</td>
<td>0.26</td>
</tr>
<tr>
<td>6/17/2021</td>
<td>Blowdown</td>
<td>713</td>
<td>87</td>
<td>2.2</td>
<td>1.8</td>
<td>0.21</td>
</tr>
<tr>
<td>6/21/2021</td>
<td>Blowdown</td>
<td>716</td>
<td>139</td>
<td>2.7</td>
<td>1.9</td>
<td>0.23</td>
</tr>
<tr>
<td>6/19/2021</td>
<td>Blowdown</td>
<td>719</td>
<td>224</td>
<td>3.1</td>
<td>2.0</td>
<td>0.15</td>
</tr>
<tr>
<td>6/29/2021</td>
<td>Blowdown</td>
<td>715</td>
<td>273</td>
<td>3.5</td>
<td>1.9</td>
<td>0.12</td>
</tr>
<tr>
<td>6/18/2021</td>
<td>Constant Press.</td>
<td>716</td>
<td>66</td>
<td>2.6</td>
<td>1.9</td>
<td>0.27</td>
</tr>
<tr>
<td>6/16/2021</td>
<td>Constant Press.</td>
<td>720</td>
<td>193</td>
<td>2.4</td>
<td>1.9</td>
<td>0.18</td>
</tr>
</tbody>
</table>
Aerosol Deposits

- Aerosol deposits on microchannel
 - Similar behavior observed for linearly diverging microchannel
 - Streaking
 - “Snowball” accumulation
 - Upstream leading edge
 - More accumulation
 - Streaking due to agglomerate migration
Next Steps in Testing

- Continue to progress toward more prototypic conditions with engineered microchannels
 - Stepped channel to add controlled tortuosity
- Test with EPRI lab-grown cracks
 - Samples and photos from Jon Tatman (EPRI)
 - Sample LT-28 shown on left
 - Independently measure flow versus pressure (no aerosols)
 - Measure aerosol transmission in final test
Independent Modeling

Two independent thermal-hydraulics codes, originally written for analysis of nuclear power plants, have been configured to examine aerosol transport inside of a vertical spent fuel storage canister.

GOTHIC

- Generation of Thermal Hydraulic Information in Containment
- Integrated finite volume, general-purpose thermal-hydraulics code
 - Used for design, licensing, safety, and operating analysis of nuclear power plants and components
 - Lumped and multidimensional geometries
 - Tracks evolution of multiple drop/aerosol fields based on transport, phase change, and interactions with other fields and surfaces

MELCOR

- Coupled thermal-hydraulic and risk-significant phenomena modeling in a system-level accident code
 - Developed at SNL for US Nuclear Regulatory Commission (NRC)
- Designed to simulate reactor, auxiliary equipment, and other nuclear components
- Uses a “control volume” approach to solve thermal-hydraulics
 - Tracks fuel and fission product release and transport
Aerosol Depletion in SNF Canister

- Normalized depletion nearly independent of initial mass concentration ($C_{m,0}$)
 - 1% fuel failure $\rightarrow \sim 200$ mg/m3
 - ~ 50 mg/m3, STP
- Lognormal particle size distribution
 - MMD$_o = 3.46$ µm and GSD$_o = 2.24$
 - Based on measurements from Hanson, et al., 2008
 - Plateauing GOTHIC results from imposition of minimum count density
- Nearly 6 orders of normalized aerosol mass depletion in less than 2 hours
• Explored flow rates and aerosol retention in a diverging microchannel
 – Characterize hypothetical aerosol-laden flow through an SCC
 • Aerosol concentration measured upstream and downstream of microchannel
 • Characteristic dimensions similar to SCCs
 – Large parameter space for aerosol transport under conditions of interest
 • Prototypic maximum canister pressure differentials
 • Air and helium tests

• Preliminary results
 – Aerosol mass transmission ranged from ~12 to 61%
 – Strong dependence on initial particle size distribution
 • As characterized by the mass median diameter

• Preliminary modeling shows significant depletion in less than 2 hours from fuel-to-canister release
 – Differences in codes identified
 • System definitions (particle size distribution, etc.)
 • Treatment of different physical parameters
 • Methods employed by the two codes
Future Work

• Continued testing of diverging microchannel
 – Attempt to isolate effects of carrier gas and particle size distributions

• Prepare for testing of lab-grown cracks
 – Clean testing first for independent flow characterization
 – Final test with aerosol-laden flow to measure particulate transmission

• Modeling will focus on unification of input conditions between codes
 – More meaningful comparisons of outputs

• Identify parameters of highest impact
 – Rank mechanisms of depletion (fallout, diffusion, thermophoresis, etc.)
 – Characterize settled distribution and particle sizes of settled aerosol