PFLOTRAN Development

U.S. Nuclear Waste Technical Review Board
Fall Workshop
November 3-4, 2021

Michael Nole
Sandia National Laboratories

SAND2021-13690 PE
Outline

- **Introduction**: what is PFLOTRAN, and where is it used?
- **Open Source**: software development and computational framework
 - Version Control
 - Task Management
 - Verification Testing
- **Process Modeling**
 - Where PFLOTRAN fits into Geologic Disposal Safety Assessment (GDSA) Framework
 - Process model coupling
 - Advancements over the original code
Introduction: What is PFLOTRAN?

- Scalable, finite volume reactive multiphase flow and transport code for simulating subsurface processes
- Open source license (GNU LGPL 2.0)
- Object-oriented Fortran 2003/2008
 - Pointers to procedures
 - Classes (extendable derived types with member procedures)
- Founded upon well-supported open source libraries
 - MPI, PETSc, HDF5, METIS/ParMETIS/CMAKE
- Demonstrated performance
 - Maximum # processes: 262,144 (Jaguar supercomputer)
 - Maximum problem size: 3.34 billion degrees of freedom
 - Scales well to over 10K cores
Introduction: Where is PFLOTRAN used?

- **Nuclear waste disposal**
 - Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM: *underwent rigorous Quality Assurance for qualification as an official WIPP PA flow code (July 2021)*
 - US DOE NE Spent Fuel and Waste Science and Technology (SFWST)
 - DEvelopment of COupled models and VALidation against EXperiments (DECOVALEX): international model comparison collaboration
 - Forsmark Spent Fuel Nuclear Waste Repository (Sweden, Amphos21)

- **Climate: coupled overland/groundwater flow**
 - Next Generation Ecosystem Experiments Arctic
 - DOE Earth System Modeling Program

- **Biogeochemical transport modeling**
 - U transport at Hanford 300 Area
 - Hyporheic zone biogeochemical cycling
 - Columbia River, WA, USA
 - East River, CO, USA
Open Source Framework

- **Benefits**
 - Collaboration: development, testing, and debugging
 - Transparency: exposes implementation details critical to scientific reproducibility, but excluded by journal publications
 - Lower barrier to entry (none if you have the expertise)
 - Code fitness must be maintained to survive
Open Source Framework

- Public code repository: https://bitbucket.org/pflotran/
 - Version control
 - Development philosophy and coding standards
 - Merge request requirements and mandatory checks
 - Major/minor/patch versioning
- Documentation: https://www.pflotran.org/documentation/
- Continuous integration
 - Regression testing
 - Unit testing
- Task Management
 - Jira
- QA Test Suite: https://www.pflotran.org/qa/
 - Modular design
Open Source Framework

- **Version Control**

 ![Diagram showing Bitbucket interface]

 - **Author**
 - **Unique code change identifier**
 - **Code change description**
 - **Verification of successful unit/regression testing**

<table>
<thead>
<tr>
<th>Author</th>
<th>Commit</th>
<th>Message</th>
<th>Date</th>
<th>Builds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jenn Frederick</td>
<td>2fb9616</td>
<td>jenn/nwt-debugging-start-fresh</td>
<td>20 hours ago</td>
<td>✔</td>
</tr>
<tr>
<td>Jenn Frederick</td>
<td>3189240</td>
<td>jenn/nwt-debugging-start-fresh</td>
<td>20 hours ago</td>
<td>✔</td>
</tr>
<tr>
<td>Glenn Hammond</td>
<td>d2a1555</td>
<td>Added hea... glenn/inversion-cgl</td>
<td>20 hours ago</td>
<td>✔</td>
</tr>
</tbody>
</table>
Open Source Framework

- Task Management
 - Developer assignment
 - Development stage
 - Prioritization
 - Issue type
 - Relative effort
 - Scope re-evaluated bi-weekly
Open Source Framework

- Code Verification Testing: GDSA Quality Assurance (QA) Test Suite
 - Modular and extendable
 - Tests against analytical solutions and outputs from GDSA-QA Test Suite

Main Folder:
- Makefile
- Makefile to run QA tests using QA Toolbox
- <test>.cfg
- Text file with paths to <test>.cfg
- <simulators> sim
- Text file with paths to simulator executed
- tests
- Docs
- HTML

QA-Toolbox
- Python Harness
 - Simulator1
 - Simulator2
 - ...
 - SimulatorN

Results from QA-Toolbox get outputted as reStructuredDoc

Gitlab
Process Modeling: GDSA Framework

Next Gen Workflow

- Input Parameters
 - Parameter database

- Uncertainty Sampling and Sensitivity Analysis

- Computational Support
 - Processing
 - VorCrust
 - dfnworks
 - Visualization
 - ParaView

Multi-Physics Simulation and Integration

- Source Term and EBS Evolution Model
 - Inventory
 - Decay, ingrowth
 - WF degradation
 - WP degradation
 - Radionuclide release
 - Thermal, mechanical
 - Gas generation

- Flow and Transport Model
 - Advection, diffusion, dispersion
 - Discrete fracture networks
 - Multiphase flow
 - Sorption, solubility, colloids
 - Isotope partitioning
 - Decay, ingrowth
 - Thermal effects
 - Chemical reactions

- Biosphere Model
 - Exposure pathways
 - Uptake/transfer
 - Dose calculations

Results
Process Modeling: GDSA Framework

- **Fluid “flow” modes:**
 - RICHARDS: conservation of water mass, variably saturated flow
 - TH: thermo-hydro; conservation of water mass and conservation of energy
 - GENERAL: conservation of water and air mass and conservation of energy; miscible multiphase flow

- **Solute “transport” modes:**
 - GIRT: global implicit reactive transport
 - UFD Decay: radionuclide sorption, partitioning, decay, and ingrowth
 - NWT: nuclear waste transport; different primary independent variables from GIRT or UFD Decay
Process Modeling: Process Model Coupling

- **Traditional Time-stepping Loop**
 - Initialization
 - Time Stepping
 - Flow
 - Reactive Transport
 - Done?
 - Finalization

- **PFLOTRAN Workflow**
 - Initialization
 - Execution
 - Finalization
 - Process Model Couplers
Process Modeling: Process Model Coupling

Process Model Coupler

- Process Model
 - Multiphase Flow

- Numerical Methods
 - Time Integrator
 - Newton Solver
 - Linear Solver

Peer (sync-point)

Child (catch-up)
PMC = Process Model Coupler

PMC A

PMC B

PMC C
Process Modeling: Process Model Coupling

PMC = Process Model Coupler

PMC A → PMC B → PMC M → PMC Y

PMC C → PMC M → PMC Z
Process Modeling: Process Model Coupling

Radioactive Waste Process Model Coupling

Initialization

Execution

Finalization

Multiphase Flow

Transport

Waste Form/Package

Isotope SPDI
Benefits

- Customizable linkage between process models, e.g.
 - Flow
 - Transport
 - Reaction
 - Updates to material properties at select times
- Flexible time stepping
 - Individual processes may run at their own time scale.
- Modularity for incorporating new process models
 - Time stepping loops for existing process models are not impacted.
Process Modeling Advancements

- Multiphase fluid and heat flow
- Radioactive sorption/partitioning/decay/ingrowth model (UFD Decay)
- Soil matrix compressibility
- Flexible models for thermal conductivity and anisotropy
- Improved multiphase capabilities during dry-out

Price et al., 2021

Nole et al., 2021
Process Modeling Advancements

- Sorption isotherm generalization
- Fuel Matrix Degradation Model (FMDM)
- Biosphere well model
- Multi-continuum transport
- Advanced linear and nonlinear solvers
- High temperature equations of state
- Reduced order geomechanics models

LaForce et al., 2021
Chang et al., 2021
References