Ongoing Research and Development: Cement Filler Testing and Analysis

Mark J. Rigali, Sandia National Laboratories

U.S. Nuclear Waste Technical Review Board Virtual Meeting
July 27-28, 2020

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
SAND2020 7279 PE
Disclaimer

This is a technical presentation that does not take into account contractual limitations or obligations under the Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (Standard Contract) (10 CFR Part 961). For example, under the provisions of the Standard Contract, spent nuclear fuel in multi-assembly canisters is not an acceptable waste form, absent a mutually agreed to contract amendment.

To the extent discussions or recommendations in this presentation conflict with the provisions of the Standard Contract, the Standard Contract governs the obligations of the parties, and this presentation in no manner supersedes, overrides, or amends the Standard Contract.

This presentation reflects technical work which could support future decision making by DOE. No inferences should be drawn from this presentation regarding future actions by DOE, which are limited both by the terms of the Standard Contract and Congressional appropriations for the Department to fulfill its obligations under the Nuclear Waste Policy Act including licensing and construction of a spent nuclear fuel repository.
Key Attributes for DPC Fillers

- Material Compatibility
- Ease of Injectability
- Moderator Displacement
- Minimal Intrinsic Neutron Moderation
- Minimal Gas Generation
- Long-Term Chemical Stability
- Radionuclide Sequestration

Phosphate-Based Cements

Low Melting Point Metals
Phosphate Cements as DPC Fillers

Advantages of Phosphate Cements:
- Inorganic
- Nontoxic
- Near Neutral pH
- Very Low Solubility (at near neutral pH)
- Self-Bonding
- Radionuclide Sequestration
Phosphate Cements Under Evaluation

- Aluminum Oxide / Aluminum Phosphate (Al₂O₃ / AlPO₄) Cements (APCs)
- Calcium Phosphate (Ca₅(PO₄)₃(OH)) Cements (CPCs)
- Wollastonite / Aluminum Phosphate (CaSiO₃ / AlPO₄) Cements (WAPCs)
- Fly Ash / Aluminum Phosphate Cements
- Other Commercially Available Cements (as Applicable)
Aluminum Phosphate Cements (APCs)

$\text{Al}_2\text{O}_3^* + 2\text{H}_3\text{PO}_4 \rightarrow 2\text{AlPO}_4 + 3\text{H}_2\text{O}$

- Based on Wagh et al., 2003 using Inexpensive Starting Materials (Al$_2$O$_3$ and H$_3$PO$_4$).

- Reactants form Smooth Pourable Slurries in Water that are Stable for Days.

- Acid-Base Reaction Results in Near Neutral pH Post Set.

- Set Temperatures Typically at 150-200 °C at both Ambient (0.1 megapascal MPa) and Elevated Pressure (up to 1 (MPa)).

* Al$_2$O$_3$ is present in excess with respect to H$_3$PO$_4$ at ~5:1

Early Attempts…

0.1 MPa Pressure 150 °C

~0.2 MPa Pressure 150 °C
APC Experimental Approach

Vary Pressure, Temperature and Time

Effects of Additives I:
Boric acid (H₃BO₃) and gadolinium oxide (Gd₂O₃) as neutron absorbers.

Effects of Additives II:
Catapal B (AlOOH), gibbsite (Al(OH)₃), and metakaolin as aluminum sources.
Ammonium dihydrogen phosphate (NH₄H₂PO₄), sodium pentahydrogen phosphate, (NaH₅(PO₄)₂) and ammonium pentahydrogen phosphate NH₄H₅(PO₄)₂ as phosphate sources.
APCs at Elevated Pressures (~1 MPa)

- Reaction between Al_2O_3 and aqueous H_3PO_4 at 150 – 200 °C at ~1 MPa for 0.5 to 2 days yields well consolidated monoliths.

- Reactants ‘set’ to produce one or more binder phases: berlineite (α-AlPO_4), $\text{AlPO}_4 \cdot \text{H}_2\text{O}$ and AlPO_4 – cristobalite.

- Subsequent curing at 250 °C for 8 hours yields berlineite (α-AlPO_4), and/or AlPO_4 – cristobalite.

- It is unclear which AlPO_4 phase is more effective as a binder.

- Adequate unconfined compressive strength measured at 5.5 MPa.
APCs at Ambient Pressure (0.1 MPa)

- The reaction \(\text{Al}_2\text{O}_3 + 2\text{H}_3\text{PO}_4 \rightarrow 2\text{AlPO}_4 + 3\text{H}_2\text{O} \) takes place at \(\geq 130 \) °C. Product water as steam causes large voids as APCs set at ambient pressure.

- Additional aluminum sources such as gibbsite (\(\text{Al(OH)}_3 \)) and metakaolin reduce or eliminate expansion and large void formation during setting of the cement.

- These sources react with acid phosphates at room temperature, causing APCs to begin setting below 100 °C.

- \(\text{NH}_4\text{H}_2\text{PO}_4, \ \text{NaH}_5(\text{PO}_4)_2, \) and \(\text{NH}_4\text{H}_5(\text{PO}_4)_2 \) were also tested as alternative phosphate sources.

- APC with metakaolin and \(\text{NaH}_5(\text{PO}_4)_2 \) additives yielded a unconfined compressive strength of 9.5 MPa.

- Binder phase(s) for the ambient pressure APCs is unidentified in almost all cases and likely amorphous.

SFWST 9 energy.gov/ne
Wollastonite Aluminum Phosphate Cements (WAPCs)

- In the presence of a wollastonite (CaSiO₃) filler, Al(OH)₃ reacts with aqueous NaH₅(PO₄)₂ to make well consolidated monoliths.

- Mixtures are set by slowly ramping temperature to 130 °C, then are cured at 250 °C.

- Unconfined compressive strength for WAPC material pictured (11.5 MPa) was greater than all APCs tested.

- Binder phase(s) cannot be identified by XRD and could be amorphous and/or possibly a glass.
Calcium Phosphate Cements (CPCs)

\[\text{Ca}_4(\text{PO}_4)_2 \text{O} + \text{CaHPO}_4 \rightarrow \text{Ca}_5(\text{PO}_4)_3(\text{OH}) \]

- Tetracalcium Phosphate (TTCP) and Dibasic Calcium Phosphate (DCPA) react aqueously at room temperature to form CPC (hydroxyapatite).

- Set time is rapid \(\leq 25 \) minutes. Calcium chelators (carboxylic acid-based) were explored to increase set times to 2-3 hours.

- Dodecanedioic Acid (DDDA) a Dicarboxylic Acid was determined to be most effective but required the use of 1 M \(\text{K}_3\text{PO}_4 \) solution (in \(\text{H}_2\text{O} \)) for complete dissolution.

- Produces CPC monoliths composed of hydroxyapatite with some residual starting product (TTCP) that negatively affects strength and integrity.
Summary and Next Steps

- Currently APCs and WAPCs show the greatest promise for continued development.

- Continue process and formulation optimization of both cements.

- Development of CPCs that set at elevated temperatures (100-200 °C) is underway.

- Measurements of filler porosity as well as their permeability to water and gas are also underway.

- Future work includes:

 • Radiation stability and long term solubility testing on optimized products.

 • Develop in-package chemistry models with fillers.

 • Small scale testing of fillers in DPC mock ups.
Selected References

Selected References

Questions?