Prioritization of Cross-Cutting Research & Development Activities: Unsaturated Alluvium Reference Case, Disposal of Dual Purpose Canisters, and Geologic Disposal Safety Assessment

U.S. Nuclear Waste Technical Review Board
Fact-Finding Meeting
November 4 and 5, 2020
Online Virtual Meeting

Emily Stein, PhD
Manager, Applied Systems Analysis and Research
Sandia National Laboratories
SAND2020-13308 PE
Disclaimer
This is a technical presentation that does not take into account contractual limitations or obligations under the Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (Standard Contract) (10 CFR Part 961). For example, under the provisions of the Standard Contract, spent nuclear fuel in multi-assembly canisters is not an acceptable waste form, absent a mutually agreed to contract amendment.

To the extent discussions or recommendations in this presentation conflict with the provisions of the Standard Contract, the Standard Contract governs the obligations of the parties, and this presentation in no manner supersedes, overrides, or amends the Standard Contract.

This presentation reflects technical work which could support future decision making by DOE. No inferences should be drawn from this presentation regarding future actions by DOE, which are limited both by the terms of the Standard Contract and Congressional appropriations for the Department to fulfill its obligations under the Nuclear Waste Policy Act including licensing and construction of a spent nuclear fuel repository.

Legal Notice
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.
Acknowledgements

Mohamed Ebeida, Kris Kuhlman, Tara LaForce, Paul Mariner, Michael Nole, Heeho Park, Frank Perry, Alex Salazar
Michael Gross, Elizabeth Miller, Terry Miller
Zhufeng Fang, Scott Painter
R&D Priorities

• Unsaturated alluvium reference case is not associated with a host rock R&D program
• Concept of a deep geologic repository in the unsaturated zone (UZ) is used to improve understanding and drive capability development
• Within Geologic Disposal Safety Assessment (GDSA) and Direct Disposal of Dual Purpose Canisters (DPC)
• Resulting capabilities are broadly applicable

UZ = Unsaturated Zone
DPC = Dual Purpose Canisters
EBS = Engineered Barrier System
GDSA = Geologic Disposal Safety Assessment (including GFM)
Host Rock Characteristics

- Repository above the water table
- Complex stratigraphy and structure
- Lithologic heterogeneity
- Perched water tables and local aquifers
- Oxidizing in repository; reducing at some depth below water table

Mariner et al. 2018
Disposal Concept

- Direct disposal of Dual Purpose Canisters (DPCs)
  - e.g., containing 24 or 37 pressurized water reactor (PWR) assemblies
- Overpack provides mechanical strength and appropriate protection against corrosion
- Crushed alluvium backfill provides shielding and protects against rockfall
- Thermal management achieved through waste package loading, aging, and spacing
- Maintain temperature <100 °C and water saturation > 0 along axes of pillars

Sevougian et al. 2019
Post Closure Safety Strategy

- **Containment**
  - Corrosion resistant overpack
  - Low water saturation

- **Limited Transport**
  - Deep water table
  - Low effective permeability ($k_{\text{eff}}$)

- **Dilution**
  - In saturated zone

- **Climate variability (arid to pluvial)**
  - In some locations recharge has not occurred over the last 100,000 y
  - Under pluvial conditions, downward liquid flux may be 5 to 10 mm/yr
  - Saturation would increase only until $k_{\text{eff}}$ balances the infiltration rate

---

Mariner et al. 2018; Perry et al. 2018
Knowledge and Capability Gaps

- Criticality Consequence Analysis for Direct Disposal of DPCs
  - What is the power output that can be sustained before driving water out of the package?
  - What are impacts to radionuclide inventory?
  - What are impacts to disposal system?

- Integrated DPC/GDSA Process Model Capability Development
  - Heat and radionuclide source terms associated with criticality event
  - Numerical methods for solution of highly nonlinear partial differential equations
  - Temperature-dependent properties and processes

- Geologic Framework Modeling (GFM) Capability Development
  - Complex structure and stratigraphy
  - Spatial heterogeneity
  - Workflow from GFM to flow and transport simulation

- Geologic meshing
Priority R&D – DPC Criticality Consequence Analysis

- **Geometry**
  - Consistent with GDSA Unsaturated Alluvium reference case (Sevougian 2019; Hardin and Kalinina 2016)
  - 40 m drift spacing, 40 m center-to-center spacing within drift
  - Square cross-section for drift (4m x 4m) and DPC (1.67 m x 5 m x 1.67 m)
  - 0.1 m overpack/shell

- **Properties**
  - Permeability $10^{-14} \, m^2$ (alluvium) $10^{-13} \, m^2$ (backfill)
  - Thermal conductivity = 1 W/(m·K) (dry) and 2 W/(m·K) (wet)
  - Canister internals = hydraulic properties of backfill

- **Scenario**
  - Postclosure with 37-PWR assembly and backfilled drifts in place
  - Top of DPC shell breached at 9000 years allowing water to enter
  - Initiate criticality event when canister is filled with water

- **Cases**
  - 10 mm/year and 2 mm/year percolation into waste package
  - Range of power outputs for criticality event

Price et al. 2019; Price 2020
37-PWR DPC in Unsaturated Alluvium: Before Breach

Temperature up to 9000 y

- 2 mm/year
- 10 mm/year

Maximum dryout
40 m x 80 m vertical cross sections

10 mm/year
500 y postclosure

2 mm/year
750 y postclosure

Liquid Saturation

Price et al. 2019; Price 2020

Price et al. 2019; Price 2020
37-PWR DPC Hypothetical Criticality Events

2 mm/year 100 W event

10 mm/year 400 W event

17,000 y

18,000 y

9100 y

9310 y

Temperature [°C]

Time [y]

Price et al. 2019; Price 2020
Priority R&D – Simulation Capability for High Temperature Systems

- **GDSA Framework**
  - Open-source software
  - Leverages high-performance computing
  - Transparent model development and implementation

---

**Input Parameters**

- Parameter database

**Uncertainty Sampling and Sensitivity Analysis**

**Computational Support**

- Pre-/Post-Processing
- Visualization

**Multi-Physics Simulation and Integration**

**Source Term and EBS Evolution Model**
- Inventory
- Decay, ingrowth
- WF degradation
- WP degradation
- Radionuclide release
- Thermal, mechanical
- Gas generation

**Flow and Transport Model**
- Advection, diffusion, dispersion
- Discrete fracture networks
- Sorption, solubility, colloids
- Isotope partitioning
- Decay, ingrowth
- Thermal effects
- Chemical reactions

**Biosphere Model**
- Exposure pathways
- Uptake/transfer
- Dose calculations

---

https://pa.sandia.gov
Minimize the residual of a multi-dimensional function

1. Newton Step and Direction overshoots.
2. Newton Trust Region (NTR) truncates the step to keep it within the region in which minimum is predicted to exist.
3. Cauchy Step and Direction follows the steepest descent.
4. Newton Trust Region Dogleg Cauchy (NTRDC) combines NTR with Cauchy to find the minimum in a single iteration.

NTRDC reduces computation time by a factor of approximately 35.

A demonstration of the NTRDC method. The algorithm corrects the appropriate Newton step-and-direction by reducing the trust region and adds Cauchy step-and-direction if the solution update can be improved further in the same iteration.

Mariner et al. 2020
Temperature-Dependent Thermal Conductivity

- Temperature-dependent processes
  - Corrosion
  - Mineralogical changes
  - Aqueous speciation (radionuclide solubilities)
  - Thermal expansion of solids
  - Buoyancy-driven fluid flow

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>$\kappa_T^D(S_i) = \kappa_T^{\text{ref}} + \sqrt{S_i(\kappa_T^{\text{ref}} - \kappa_T^{\text{ref}})}$ (24)</td>
</tr>
<tr>
<td>Constant</td>
<td>$\kappa_T = \kappa_T^{\text{ref}}$ (25)</td>
</tr>
<tr>
<td>Linear Resistivity</td>
<td>$\kappa_T(S_i, T) = \frac{\kappa_T^D(S_i)}{a_1 + a_2(T-T_{\text{ref}})}$ (26)</td>
</tr>
<tr>
<td>Cubic Polynomial</td>
<td>$\kappa_T(S_i, T) = \kappa_T^D(S_i) [1 + \beta_1(T-T_{\text{ref}}) + \beta_2(T-T_{\text{ref}})^2 + \beta_3(T-T_{\text{ref}})^3]$ (27)</td>
</tr>
<tr>
<td>Power Law</td>
<td>$\kappa_T(S_i, T) = \kappa_T^D(S_i) \left(\frac{T-T_{\text{ref}}}{300}\right)^7$ (28)</td>
</tr>
</tbody>
</table>

Brine Availability Test in Salt (BATS) Core sample thermal conductivity

Granite, basalt, shale, and salt

Various soils at temperatures up to 1700 °C

Crystals, ceramics, and engineering materials

Kuhlman et al. 2020; LaForce et al. 2020
- Capability added to PFLOTRAN’s Waste Form Process Model
- Reads files containing
  - Power as function of time
  - Radionuclide inventory as function of time
- Future: integrate with neutronics calculations to model criticality power output as a function of water saturation

Price et al. 2019
Fuel Matrix Degradation Model (FMDM)

- 1-D reactive transport model to simulate dissolution of spent nuclear fuel (SNF) as a function of:
  - Radiolysis
  - Diffusion of reactants through growing alteration layer
  - Interfacial corrosion potential

- GDSA Framework integration:
  - Implement efficient numerical methods for mechanistic coupling
  - Speed computation using machine-learned surrogate models
  - Future: Couple to evolution of in-package chemistry given specific conditions
  - Future: Model validation against SNF dissolution experiments

(Jerden et al. 2018; Mariner et al. 2020)
Priority R&D – 3-Dimensional Geologic Framework Model (GFM)

- Constructed from surfaces (stratigraphic horizons, faults) derived from 3D seismic surveys and borehole data
- Informed by digital elevation maps, geologic maps, cross sections, and conceptual models
- May also hold lithologic data, hydrologic data
- Iteration improves subsurface characterization

Gross et al. 2019
Complexity Makes Alluvial Basin GFM a Useful Test Case
Adding Lithofacies and Hydrologic Properties

- Lithofacies
  - 3 alluvial facies
  - Bedrock

- Geostatistical distributions describe hydrologic properties
  - Porosity
  - Permeability

Gross et al. 2020
GFM to Computational Mesh

- **LaGriT**
  - Automate information processing and workflow to create computational mesh from GFM
  - Versatile tools for user-controlled generation of Voronoi mesh using Delauney triangulation

- **VoroCrust**
  - The first provably correct algorithm for conforming Voronoi tessellation
  - Automated algorithm simplifies meshing

---

Gross et al. 2020
VoroCrust Development

- User-friendliness
  - User-controlled mesh specifications
  - Input and output formats
  - User manual and website
- Computational efficiency
  - Parallelization
- Advanced capability
  - Anisotropic Voronoi cells for meshing thin features and stratigraphic layers

Mariner et al. 2020

https://vorocrust.sandia.gov
Priority R&D – Forward Look at GDSA-DPC Integration

Prioritization of Cross-Cutting Research & Development Activities:
High-Temperature Shale Reference Case, Disposal of Dual Purpose Canisters,
and Geologic Disposal Safety Assessment

- Representative waste package loading using UNF ST&NDARDS database
- Temperature dependent reactions
  - Mineralogy
  - Aqueous speciation
  - Radionuclide solubility and sorption
- Corrosion models
  - Temperature-dependent, material-specific
  - Waste package
  - Cladding
  - Neutron absorbers
- Thermal-Hydrological-Mechanical evolution of the near field

Price 2020; Freeze and Howard 2020; Stein et al. 2020


