Salt Host Rock Generic Disposal Research R&D

Nuclear Waste Technical Review Board
Fall 2020 Fact-Finding Meeting (Nov 4-5, 2020)
Generic Disposal Research & Development Program Priorities

Kristopher L. Kuhlman
Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003520. (SAND2020-13309 PE)
Salt R&D Team

Sandia National Laboratories (SNL)
Kris Kuhlman, Melissa Mills, Rick Jayne, Ed Matteo, Courtney Herrick, Charles Choens, Jason Heath, Martin Nemer, Yongliang Xiong, Matt Paul

Los Alamos National Laboratory (LANL)
Phil Stauffer, Hakim Boukhalfa, Thom Rahn, Eric Guiltinan

Waste Isolation Pilot Plant Test Coordination Office (LANL)
Brian Dozier, Shawn Otto, Dave Guerin

Lawrence Berkeley National Laboratory (LBNL)
Jonny Rutqvist, Yuxin Wu, Mengsu Hu
Overview

1. Introduction
 • Characteristics
 • General safety strategy

2. Possible Gaps in Understanding
 • Fundamental processes
 • State of technology
 • Research needs

3. DOE-NE Research Addressing Gaps
 • Brine Availability Test in Salt (BATS)
 • Engineered barrier systems (EBS)
 • Model development (including GDSA)
Intro: Salt R&D Priorities Context

- **Brine Availability Test in Salt (BATS)**
 - Focus of program
 - EBS, International & GDSA aspects

- **No foreign salt URL**

- **Mature collaborations**
 - Germany, UK, Netherlands
 - US/German workshop (11 years)
 - DECOVALEX 2023 Task E

- **DPC not focused on salt**

DECOVALEX = Development of Coupled models and their Validation against Experiments
UZ = unsaturated sone
DPC = dual purpose canisters
EBS = engineered barrier system
GDSA = Geologic Disposal Safety Assessment
URL = underground research laboratory
WIPP = Waste Isolation Pilot Plant

Kuhlman et al., (2020a)
Intro: Unique Salt Characteristics

Salt Long-term Benefits at km-scale

- Low porosity ($\phi \leq 0.1 \text{ vol-\%}$) and permeability ($k \leq 10^{-22} \text{ m}^2$)
- High thermal conductivity ($\geq 5 \text{ W/m \cdot K}$)
- High peak temperature ($T_{\text{max}} \approx 200 \text{ °C}$)
- Openings creep closed ($> 10^0 - 10^2 \text{ yr}$)
- Run-of-mine salt heals to intact salt
- No flowing groundwater ($\leq 5 \text{ wt-\% water}$)
- Chlorine ($\geq 190 \text{ g/L}$) \rightarrow reduces criticality concerns
- Hypersaline \rightarrow reduces colloid mobility
- Low water activity (< 0.75) \rightarrow biologically simple

Near-field, Short-term Complexities

- ϕ and k higher near drift
- Near drift fractured, highly anisotropic ($k_r < k_\theta$)

Borns & Stormont (1988)
Water in Bedded Salt

1. Disseminated clay (< 5 vol-%; ~25 vol-% brine)
2. Intragranular fluid inclusions (1 – 2 vol-%)
3. Hydrous minerals (e.g., K$_2$Ca$_2$Mg(SO$_4$)$_4$·2H$_2$O; < 5 vol-%)
4. Intergranular brine (<< 1 vol-%)

Each responds differently to heat & pressure
Intro: General Post-Closure Safety Strategy

- **Release to Biosphere Requires**
 - Solvent (water)
 - Method & driving force
 - Advection: Δ pressure (closure + gas pressure)
 - Diffusion: Δ concentration
 - Pathway to biosphere
 - Shaft seals
 - Host rock

- **Salt Disposal Benefits from**
 - Minimal free water
 - Impermeable host rock

- **Shaft Seals main Pathway to Biosphere**
 - Designed to reduce/eliminate advection
 - Shaft seal *multi-barrier* concept
 - **RANGERS US/DE collaboration**: drift/shaft seals
Intro: Salt Repository Susceptibility to Climate Change

- **Fresh Water Impacts?**
 - Density-limited impact of overlying fresh water
 - Stable arrangement
 - High-pressure fresh water from below repository
 - Unstable arrangement
 - Could erode salt as “breccia pipe”
 - Avoided in siting process

- **No Direct Impacts of**
 - Increased precipitation / temperature
 - Glaciation / Deglaciation

- **Main Release Drivers**
 - Advection up shaft (creep + corrosion + microbes $\rightarrow \Delta$ pressure)
 - Diffusive transport up shaft seals (slow)
 - Human intrusion (by law)
Gaps: Fundamental Processes in Salt / Definitions

- Salt Repository Regions
 1. Backfilled drift
 2. Excavation Damaged Zone (EDZ)
 - Properties change
 - 1 – 1.5 radii
 3. Excavation disturbed Zone (EdZ)
 - System state change
 - 2 – 5 radii

- Early Time
 - $\Delta \sigma \rightarrow$ EDZ $\rightarrow \Delta k$ and $\Delta \phi$

- Later Time (10 – 1000 yrs)
 - Backfill \rightarrow intact salt
 - EDZ \rightarrow intact salt
 - EdZ shrinks significantly
Gaps: Understanding Fundamental Processes

- Safety Assessment Relies on Far-field Properties
 - Material properties (porosity, permeability)
 - State variables (pore pressure, saturation, stress)

- Steep Gradients across EDZ/EdZ
 - Mechanical / thermal / hydrological perturbation
 - Heat pipe in granular salt?
 - Thermal expansion → permeability change
 - Two-phase fracture flow
 - Operations (e.g., ventilation)

- Early-time Non-linear Predictions
 - Dissolution / precipitation modifies
 - Transport properties (k, ϕ, 2-phase flow)
 - Mechanical properties (strength, creep)

Beauheim & Roberts (2002)
Salt heat pipe conceptual model (Kuhlman, 2019)
Avery Island permeability data (Stickney & Van Sambeek, 1984)
Gaps: State of Conceptual/Numerical Models

- **Far-field Modeling**
 - GDSA model (PFLOTRAN)
 - Single-phase flow
 - Minor system perturbation (~linear)

- **Non-linear EDZ/EdZ Process Modeling**
 - THMC models (TOUGH/FLAC)
 - Appropriate simplifications?
 - Single-phase flow
 - Fractured salt is porous medium
 - Uncouple fast / slow processes
 - Use TH/THC models (PFLOTRAN, FEHM, TOUGH)
 - More work on
 - Constitutive laws (*WEIMOS US/DE collaboration*)
 - Model parameterization (*DECOVALEX 2023*)
 - Complex chemistry and C-M coupling
Q: Does Safety Assessment Require Accurate EDZ Predictions?

Option 1: Rely entirely on geological isolation
- Enough brine for fast corrosion
- Enough brine to dissolve radionuclides
- Microbial & corrosion gas generation (more driving force)
- Heat conduction only

Option 2: Account for EDZ/brine processes
- Heat dries out waste (limits corrosion & transport)
- Heat reduces EDZ porosity/permeability
- Few halophilic microbes (less driving force)
- Heat pipes in granular salt (convection \gg conduction, $\downarrow T_{\text{max}}$)
- Quantify when backfill & EDZ \rightarrow intact salt

Option 3: Fall back on geology, investigate EDZ processes
Gaps: State of Monitoring/Characterization

- Only Open/flowing Fractures in EDZ
- Siting to Avoid “Fatal Flaws”:
 - Deep high-pressure fresh water (breccia pipes)
 - Human impacts (boreholes / solution mining)
- Difficult Monitoring / Exploration
 - Far-field salt has “immeasurably” low \(k, \phi \)
 - Cannot measure \(k, \phi \) from surface (500 – 1000 m away)
 - Need underground access (i.e., URL)
 - Oil/gas exploration methods ineffective
 - Low permeability + creep = difficult testing
 - Flowing brine \(\rightarrow \) changes salt (precipitation / dissolution)
 - Helium “leak testing” methods required
 - Brine corrosive to instrumentation

Discrete fractures in BATS near-drift EDZ

WIPP brine permeability testing
(Roberts et al., 1999; Beauheim & Roberts, 2002)
Current R&D: Brine Availability Test in Salt (BATS) at WIPP

- Two Arrays: Heated / Unheated
- Central Packer (heater 2.75 m deep)
 - Borehole closure
 - Water production and isotopic composition
 - In-drift spectroscopy
- Cement Seals Study
 - Cement + Salt + Brine interactions
- Geophysics Mapping
 - “4D” Electrical resistivity tomography
 - Acoustic emissions
- BATS Phases
 - 1a: Jan-Mar 2020 (done)
 - 1b-1c: early 2021 (tracer tests)
 - 2.0: New Boreholes in late 2021
- DECOVALEX 2023 Task E
- 2019 NWTRB Presentation
Current R&D: Engineered Barriers Systems

- **RANGERS US/DE Collaboration**: Drift/Shaft Seals
- **Run-of-Mine Salt Seals**
 - KOMPASS US/DE collaboration: granular salt
 - Granular salt reconsolidation: \(f(T, \sigma, \text{moisture}, \ldots) \)
 - Standardize testing methods
 - Increase reconsolidation rate
 - Time to evolve granular \(\rightarrow \) intact salt
 - Field conditions: \(10^1 - 10^3 \) years
 - How to speed up in laboratory?
- **Cementitious Seals**
 - Sorel cement (MgO + MgCl\(_2\) brine)
 - Salt concrete (Furnace slag + NaCl brine)
 - BATS: demo salt/seals with/without heating
 - DECOVALEX US/DE collaboration: lab seals
Current R&D: Model Development

- Improved Processes and Non-linear Coupling in PFLOTRAN (GDSA)
 - Temperature-dependent thermal conductivity (LaForce et al., 2020)
 - Include and improve geomechanical models

- International Benchmarking / Validating Models
 - **DECOVALEX Task E**: BATS heater/brine test
 - **WEIMOS**: mechanical constitutive models
 - **KOMPASS**: granular salt reconsolidation

- Improving Process Models (TOUGH/FEHM)
 - Multicontinuum fluid inclusions
 - Salt dehydration & porosity evolution
 - Two-phase flow (brine + air) in salt
 - Cutting-edge meshing tools
 - LaGriT & VoroCrust

LaForce et al., 2020

Hu & Rutqvist (2020)

Jordan et al., (2015)

http://vorocrust.sandia.gov
Summary: Prioritization of Salt R&D

Where does work have the greatest impact?

- **Lower Priority**
 - Far-field salt behavior
 - Large/hot waste packages

- **Higher Priority (next 5 years)**
 - Drift/shaft seal (RANGERS, KOMPASS)
 - Multi-barrier design
 - Timing of return to far-field conditions
 - Investigating coupled EDZ processes
 - BATS field test at WIPP (DECOVALEX)

Safety assessment relies on geology, bolstered by EDZ understanding.
Acronyms and Initialisms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATS</td>
<td>brine availability test in salt</td>
</tr>
<tr>
<td>CT</td>
<td>computed tomography</td>
</tr>
<tr>
<td>DECOVALEX</td>
<td>Development of Coupled models and their Validation against Experiments</td>
</tr>
<tr>
<td>DOE-EM</td>
<td>DOE Office of Environmental Management</td>
</tr>
<tr>
<td>DOE-NE</td>
<td>DOE Office of Nuclear Energy</td>
</tr>
<tr>
<td>DPC</td>
<td>dual-purpose canisters</td>
</tr>
<tr>
<td>EBS</td>
<td>engineered barrier system</td>
</tr>
<tr>
<td>EDZ</td>
<td>excavation damaged zone</td>
</tr>
<tr>
<td>EdZ</td>
<td>excavation disturbed zone</td>
</tr>
<tr>
<td>FEHM</td>
<td>LANL porous media flow and transport simulator</td>
</tr>
<tr>
<td>FLAC</td>
<td>Itasca geomechanical simulator</td>
</tr>
<tr>
<td>FY</td>
<td>fiscal year (Oct-Sept)</td>
</tr>
<tr>
<td>GDSA</td>
<td>geologic disposal safety assessment</td>
</tr>
<tr>
<td>HLW</td>
<td>high-level waste</td>
</tr>
<tr>
<td>KOMPASS</td>
<td>Joint Project on the Compaction of Crushed Salt for Safe Containment</td>
</tr>
<tr>
<td>LaGriT</td>
<td>Los Alamos grid toolbox</td>
</tr>
<tr>
<td>LANL</td>
<td>Los Alamos National Laboratory</td>
</tr>
<tr>
<td>LBNL</td>
<td>Lawrence Berkeley National Laboratory</td>
</tr>
<tr>
<td>PA</td>
<td>performance assessment</td>
</tr>
<tr>
<td>PFLOTRAN</td>
<td>Open-source massively parallel GDSA reactive flow and transport simulator</td>
</tr>
<tr>
<td>RANGERS</td>
<td>Design and Integrity Guideline for Engineered Barrier Systems for a HLW Repository in Salt</td>
</tr>
<tr>
<td>R&D</td>
<td>research and development</td>
</tr>
<tr>
<td>SA</td>
<td>safety assessment</td>
</tr>
<tr>
<td>SFWST</td>
<td>Spent Fuel & Waste Science & Technology</td>
</tr>
<tr>
<td>SNL</td>
<td>Sandia National Laboratories</td>
</tr>
<tr>
<td>TH</td>
<td>thermal-hydrological</td>
</tr>
<tr>
<td>THC</td>
<td>thermal-hydrological-chemical</td>
</tr>
<tr>
<td>THMC</td>
<td>thermal-hydrological-mechanical-chemical</td>
</tr>
<tr>
<td>TOUGH</td>
<td>LBNL porous media flow and transport simulator</td>
</tr>
<tr>
<td>URL</td>
<td>underground research laboratory</td>
</tr>
<tr>
<td>VoroCrust</td>
<td>Sandia Voronoi meshing toolbox</td>
</tr>
<tr>
<td>WEIMOS</td>
<td>Further Development and Qualification of the Rock Mechanical Modeling for the Final HLW Disposal in Rock Salt</td>
</tr>
<tr>
<td>WIPP</td>
<td>Waste Isolation Pilot Plant (DOE-EM site)</td>
</tr>
</tbody>
</table>