Argillite Host Rock: Reference Disposal Concept(s) and Key Considerations

Spent Fuel and Waste Science and Technology (SFWST)

Carlos F. Jové Colón (SNL)

NWTRB Fall 2020 Fact-Finding Meeting
SAND2020-13315 PE
Acknowledgements

• C. Payne (SNL), J. Kruichak (SNL), M. Mills (SNL), A. Knight (SNL), H. Moffat (SNL), E. Coker (SNL), T. Ho (SNL), Y. Wang (SNL), E. Stein (SNL), S. David Sevougian (SNL), F. Perry (SNL), C. M. Lopez (SNL), F. Caporuscio (LANL), K. Sauer (LANL), M. Cheshire (LANL), J. Rutqvist (LBNL), L. Zheng (LBNL)
Outline

• Argillite Repository Concept
• Knowledge Gaps & R&D Priorities
• Repository Relevant Processes
• Argillite Reference Case
• Highlights – Disposal in Argillite R&D
• Summary
Argillite/Shale Repository Concept

High-Level radioactive waste disposal (ANDRA) – COx Argillite (Bildstein and Claret 2015)

Swiss repository concept (Delage et al. 2010) - Opalinus Clay

Shale Attributes

- Low permeability / hydraulic conductivity
- Low diffusion coefficients
- Good retention capacity for radionuclides
Porewater Chemistry in Clay Formations

- Porewater compositions are highly variable
- Overall: Na-Cl brines with some Ca & carbonate

Sources: United States Geological Survey (USGS) produced water (Blondes et al. 2018); NATCARB (Bauer et al. 2018); WATSTORE (von Damm 1987)

Stein et al. (2020)
R&D Priorities – Argillite (Shale)

UZ = Unsaturated Zone
DPC = Dual Purpose Canisters
EBS = Engineered Barrier System
GDSA = Geologic Disposal Safety Assessment
Knowledge Gaps & R&D Priorities

Some Activities With Medium-High Score in 2019 R&D Roadmap Update

- **High-Temperature Behavior** - Chemical processes still under development, particularly at elevated temperature conditions
- **EBS High Temperature experimental data collection** - To evaluate high temperature mineralogical/geochemical changes
- **Analysis of clay hydration/dehydration and alteration** under various environmental conditions
- **Buffer/backfill dry-out and resaturation process**
- **THC processes in EBS** - High importance for design/construction arguments affecting disposal system design that utilize backfill-buffer as an engineered barrier
- **Argillite Coupled THM processes modeling** including host rock, EBS, and EDZ
- **Cement plug/liner degradation; Evaluation of ordinary Portland cement (OPC)**
Repository Phases and Relevant Processes: Cross-Cuts With International Partnerships

Features:
- Biosphere
 - Aquifer
- Host Rock (e.g., salt, clay, or granite)
- Disturbed Rock Zone (DRZ)
- Backfilled Drift

Processes:
- Biosphere (Aquifer, Receptor Well)
 - Dilution
 - Irrigation
 - Water Consumption
 - Dose Conversion Factors
- Far Field (NBS) (Host Rock, Interbeds)
 - Flow & Transport
 - Coupled Processes
 - Sorption
 - RN Decay and Isogrowth
- Near Field (EBS = DRZ) (Backfill, Shaft Seals, DRZ)
 - EBS & DRZ Evolution
 - Chemical Interactions
 - Thermal Effects
 - Mechanical Effects
 - Flow and Transport
 - Coupled Processes

Events:
- Seismic:
- Igneous:

Key R&D Issues:
- Near-Field Perturbation
- Engineered Barrier Integrity
- Flow and Radionuclide Transport
- Demonstration of Integrated System Behavior

Abbreviations:
- ALC = Full-scale Emplacement Experiment (France)
- BATS = Heated Brine Availability Test in Salt (USA)
- BRIE = Bentonite Rock Interaction Experiment (Sweden)
- FEBEX = Full-Scale Engineered Barrier Experiment (Switzerland)
- CFM = Colloid Formation Migration (Switzerland)
- TED = Thermal Experiment (France)
- FE = Full-scale Emplacement Experiment (Switzerland)
- HE-E = Heater Experiment in Micro-tunnel (Switzerland)
- HotBent = High-Temperature Heater Test (Switzerland)
- HLW = High Level Waste
- LTDE = Long-Term Diffusion Sorption Experiment (Sweden)
Argillite Reference Case

Stein et al. (2017)

Evaluation of disposal design concepts
- Thermal management in clay/shale repository
 - Waste package and drift spacing
 - Coupled Multiphase transport phenomena
Argillite Reference Case: Deterministic Simulations of Generic Disposal in Shale

Generic stratigraphic column for shale reference case

24-PWR = 24 SNF Pressurized Water Reactor Assemblies
drz = disturbed rock zone

Sevougian et al. (2019)
Highlights – Disposal in Argillite R&D

- **High temperature** experiments of bentonite interactions with barrier materials and host rocks: granodiorite & Opalinus Clay
- **Development of a preliminary GDSA reference case** for disposal in argillite media
- **Advances in thermal-hydrological-mechanical-chemical (THMC) modeling approaches** of bentonite barrier, argillite rock, and excavated disturbed zone (EDZ; fracture/damage behavior) & gas migration
- **Thermodynamic modeling** of bentonite – barrier material interactions & thermodynamic database development
- **Non-isothermal 1D-3D thermal-hydrological-chemical (THC) reactive transport modeling**
- **International collaborations:**
 - DECOVALEX19: PFLOTRAN hydrological-chemical (HC) modeling of barrier interactions
 - DECOVALEX2023: Gas transport in clays (just started!)
Past Experiments: Steel – Clay Interactions

Experiment
- $T = 300^\circ\text{C}$; STRIPA brine
- Wyoming Bentonite
- 316 & 304 stainless steel (SS)

Corrosion products
- Uniform corrosion (no pitting)
- Chromite passivation layer
- Fe-rich smectite (Fe-saponite), Chlorite
- Pentlandite ($\text{Fe}_9\text{Ni}_3\text{S}_8$)
- Millerite (NiS)

Chemical Reaction
$$
\text{Fe}^{1.22}\text{Cr}^{0.37}\text{Ni}^{0.22}(\text{SS}) + 2\text{O}_2 =
\text{FeCr}_2\text{O}_4(\text{M}) + 5.60\text{Fe}^{4+} +
1.19\text{Ni}^{3+} + 13.58\text{e}^-
$$
$$
4.5\text{Fe}^{2+} + 4.5\text{Ni}^{2+} + 8\text{HS}^- + 2\text{e}^- =
(\text{Fe,Ni})_9\text{S}_8(\text{pent}) + 8\text{H}^+
$$

Pourbaix Diagram
Thermodynamic modeling and database development

Cheshire et al. 2014, 2018
Barrier Material Interactions: Bulk Mineralogy Changes – Quantitative X-ray Diffraction (Q-XRD) Analysis

- **Opalinus Clay ± Wyoming Bentonite**
 - 300°C (6 months): Zeolite formation in clay and along cracks and edges on the Opalinus Clay fragments, plagioclase
 - 200°C (8 weeks): No zeolites or feldspar
 - Both: wt.% clay increases

- **Opalinus Clay + Wyoming Bentonite + Portland Cement**
 - Formation of calcium-silicate-hydrate (CSH) minerals, zeolites, plagioclase at 200°C
 - Clay degradation
 - Reduction in clay swelling
 - Amorphous material (gel?)

Sauer et al. (2019)
Thermo-Hydrological-Mechanical (THM) Processes in Clay URL Experiments and Simulation

Continuum model approach using TOUGH-FLAC
Discrete fracture model approach using TOUGH-RBSN

LBNL for modeling gas migration through clay associated with DECOVALEX-2019

Plan view of Mont Terri FE experiment – Opalinus Clay
Rutqvist et al. (2020)
Non-isothermal 1D-3D Thermo-Hydrological-Chemical (THC) reactive transport modeling

- Waste canister length: 4.7 m
- 12-PWR assemblies
- 50-year storage time

Evaluation of thermal effects on fluid/solid interactions
- Chemical reactions – mineral dissolution/precipitation
- Changes in bulk mineralogy
- Evaluate changes in porosity/permeability

Ho et al. (2019)
Section 49 Sampling

Bentonite Thermal Behavior

- Bentonite dehydration behavior is a function of the duration of hydration that precedes it.
- Appearance of a “shoulder peak” during dehydration suggests different energetics for swelling clay hydration and dehydration.
- Ideal for the thermal study of bentonite with additives.

Jove Colon et al. (2019)
3D Reactive Transport Simulations using PFLOTRAN simulation code

Focus: Shotcrete – groundwater interactions in the CTD
DECOVALEX19: PFLOTRAN 3D Reactive Transport (RT) Model of GREET URL Experiment (Mizunami Site, Japan)

- Model representation agrees with overall trend chemical trends
- Sensitivity analyses (SA) on kinetic rate law parameters for various cement phases and volume fraction of mineral components
- Simulations have been conducted to evaluate the effect of shotcrete thickness effects

Jóve Colón et al. (2020).
Summary

• Development of a high temperature argillite reference case
 - Need to further disposal concepts for DPC’s, EBS design options (e.g., thermal management), and post-closure strategies

• Bentonite-metal-cement-Opalinus Clay interactions:
 - Reactions produces zeolites and with some swelling reduction in smectite as a result of interactions with alkaline solutions
 - Future Work: Study effects of host rock composition & other barrier materials (e.g. cement); expand 3D non-isothermal model to various waste packages

• DECOVALEX HC (GREET) modeling and Thermal Analyses on FEBEX-DP Bentonite:
 - 3D reactive transport model of shotcrete interactions in CTD experiment represent overall chemical trends
 - Cyclic thermal analysis (hydration/dehydration) experiments show reproducible results between cycles with slower dehydration rates
 - Future Work: Investigate hydrological-chemical (HC) model sensitivities to shotcrete thickness; expand cyclic thermal analyses & X-ray diffraction (XRD) methods to evaluate high temperature effects; maintain engagement with international programs (DECOVALEX2023; EBS Task Force)
References

Disclaimer
This is a technical presentation that does not take into account contractual limitations or obligations under the Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (Standard Contract) (10 CFR Part 961). For example, under the provisions of the Standard Contract, spent nuclear fuel in multi-assembly canisters is not an acceptable waste form, absent a mutually agreed to contract amendment.

To the extent discussions or recommendations in this presentation conflict with the provisions of the Standard Contract, the Standard Contract governs the obligations of the parties, and this presentation in no manner supersedes, overrides, or amends the Standard Contract.

This presentation reflects technical work which could support future decision making by DOE. No inferences should be drawn from this presentation regarding future actions by DOE, which are limited both by the terms of the Standard Contract and Congressional appropriations for the Department to fulfill its obligations under the Nuclear Waste Policy Act including licensing and construction of a spent nuclear fuel repository.

Legal Notice
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.