Thermo-Hydro-Mechanical (THM) Perturbations in Bentonite/Argillite Repositories: Heater Tests at Mont Terri and Bure

U.S. Nuclear Waste Technical Review Board Workshop
Burlingame, California
April 24-25, 2019

Jonny Rutqvist
Senior Scientist
Energy Geosciences Division
Lawrence Berkeley National Laboratory
Berkeley, California
Argillite Coupled THM Modeling Team

Lawrence Berkeley National Laboratory
Jonny Rutqvist, Hao Xu, Kunhwi Kim, Liange Zheng, Jens Birkholzer

International Collaboration

Task Leads from NAGRA and SwissTopo, Switzerland, for Mont Terri heater experiments, in Opalinus Clay.

Task Leads from ANDRA, France, for heater experiments at Bure underground research laboratory in COx Claystone.

DECOVALEX Research Teams (> 10 international teams)
Argillite Repository Concept

Clay/Shale provinces in the United States (Gonzales and Johnson 1984)

Barriers:

- Waste canister (containment)
- Tight bentonite buffer
- “Impermeable” host rock
Short Term (0 to 10,000 years) Thermally Driven Coupled THM Processes

- Stress-induced fracture opening or closure with associated permeability change
- Infiltration of water from rock to bentonite
- Heating of bentonite and rock
- Drying and shrinkage
- Wetting and swelling of bentonite
- Thermal Pressurization
- Vapor flow along thermal gradient away from heat source

(Rutqvist, 2015)
Long Term (10,000 to 100,000 years) Impact of Coupled THM Processes

- Temperature close to ambient
- Restored hydrostatic fluid pressure
- Bentonite 100% Saturated with a Swelling pressure of ≈ 5 MPa
- Remaining “permanent” changes in rock properties (e.g. irreversible fracture shear)?
- Excavation Disturbed Zone (EDZ)
- Sealing at bentonite-rock interface?
- Sealing of fracture?

(Rutqvist, 2015)
International URL Portfolio in a Nutshell

Key R&D Issues
- Near-Field Perturbation
- Engineered Barrier Integrity
- Flow and Radionuclide Transport
- Demonstration of Integrated System Behavior

Salt
- Argillite/Mudstone
- EBS
- Gas Migration
- Streaming Potential
- Bedrichov Tunnel
- LTDE
- CFM
- GREET
- BRIE
- FEBEX & HotBENT
- BATS
- TDSE (Asse)

Far-Field
- DR-A
- HG-A
- FS
- TED and ALC

Heater tests at Mont Terri & Bure

Argillite/Mudstone

Crystalline

J. Rutqvist, Thermo-Hydro-Mechanical Perturbation (NWTRB April 2019)
Repository Phases and Relevant Processes

Key R&D Issues

- Near-Field Perturbation
- Engineered Barrier Integrity
- Flow and Radionuclide Transport
- Demonstration of Integrated System Behavior

Heater tests at Mont Terri & Bure

TED, ALC, HE-E

FE
A Thermo-Hydro-Mechanical Model Framework

TOUGH-FLAC Simulator:

• Linking two established codes (each thousands of users world-wide)

• Both codes continuously developed and applied and in their respective fields

• Large number of fluid and mechanical constitutive material models

• First developed and applied in the Yucca Mountain Project (2000-2008)

• Bentonite and clay rock (from 2011)

• Salt host rock and backfill (from 2013)

• International TOUGH-FLAC users related to nuclear waste disposal in Germany, United Kingdom, Switzerland, and South Korea

By adding to existing model capability

(Rutqvist et al., 2002; Rutqvist 2011; 2017)
1) Barcelona Basic Model (BBM)

- Constitutive model for unsaturated clay
- Dry bentonite is hard and strong (effect of suction)
- Swells with wetting becomes a soft clay

2) Barcelona Expansive Model (BExM)

- More advanced constitutive model considering micro- and macro-porosity
- All parameters not readily available for various types of bentonite

Bentonite blocks stored at different relative humidity (Teodori et al., 2011)
Model of Mont Terri Half-Scale (HE-E) Experiment in Opalinus Clay (DECOVALEX-2015 Project)

3 years of heating up to 140°C

Modeling Steps:

1) Bentonite parameters from lab experiments
2) Opalinus Clay properties from Mont Terri Project (lab and in situ data)
3) Blind prediction of THM response at HE-E experiment
4) Understand field data response and update model
Coupled Thermo-hydraulic Processes during Resaturation of the Bentonite Buffer

Liquid Darcy Flow:

\[q_l^w = -\rho_l X_l^w \frac{k k_{rl}}{\mu_l} (\nabla P_l - \rho_l g \nabla z) \]

- Liquid pressure gradient

Vapor diffusion:

\[i_g^w = -\rho_g \phi_g \tau D_g^w \nabla X_g^w \]

- Effective vapor diffusion
- Water mass fraction in gas

Heater

Temperature

Heating

Host rock

Condense

Evaporate

Vapor diffusion

Liquid flow

Saturation and liquid pressure

Wetting

Drying
Coupled Thermo-hydraulic Processes in the Buffer: Model Prediction versus Measurements

- Blind prediction (3 years) reasonably good, although not perfect
Model Comparison among 8 DECOVALEX Teams

Monitoring Point in Granular Bentonite

Monitoring Point in Bentonite Blocks

Temperature

Relative Humidity

Temperature [°C]

Relative Humidity [%]

21.02.11 23.10.11 23.06.12 22.02.13 24.10.13

20 40 60 80 100

LBNL CAS BGR CNWRA KAERI CNSC ENSI JAEA
Mont Terri Full-scale Emplacement (FE) Demonstration Experiment

Expect 15 to 20 years of heating and monitoring

Granular bentonite emplacement

Instrumented Tunnel around H3

Seismic sensors

Extensometer

All heaters turned on from Feb 15, 2015

J. Rutqvist, Thermo-Hydro-Mechanical Perturbation (NWTRB April 2019)
TOUGH-FLAC Model of FE Experiment

- THM Properties based on previous half-scale (HE-E) model simulations
• Good agreement, but for a reduced effective vapor diffusion coefficient compared to that of the half-scale experiment (i.e. not entirely consistent)

• Longer-term field data (e.g. 10 years) will be important to confirm swelling stress evolution in the buffer
Upscaling of THM Parameters in COx Clay (DECOVALEX Task Led by ANDRA, France)

- How to go from sample to a repository scale?
- Heater tests at Bure underground research laboratory (France)
- The host rock consists of Callovo-Oxfordian claystone (COx)
- Main issue studied is thermally induced pore pressure buildup and stress changes around a repository in Argillite
Modeling of Micro-tunnel Experiment at Bure URL (ALC Experiment)

• Mesh

305244 elements in total including boundary elements.
Modeling of Micro-tunnel Experiment at Bure URL (ALC Experiment)

A movie of thermal pressurization

Time: -316.000000 days

Temperature

5.0e+00 40 60 8.0e+01

Pore Pressure

5.0e+05 3e+6 6.5e+06

1616-2

1616-2

1616-2
Modeling of Micro-tunnel Experiment at Bure URL (ALC Experiment)
Comparison of blind prediction to measurements:

- Temperature in excellent agreement
- Pressure magnitude OK but longer term evolution deviates at some locations
Output to Geologic Safety Assessment Analysis (GDSA) and Performance Assessment (Pa)

- Near field of emplacement tunnels in different parts of a repository, for different FEPs such as nominal case or cases of extensive gas generation.

- **Output** to the PA model: (1) **changes in flow properties** (e.g. permeability and porosity) in the near-field, including the buffer and EDZ, (2) inform PA about local flow created by coupled processes.

Coupled Processes Model of an Emplacement Tunnel

- Infiltration of water from rock to bentonite
- Thermal Stress
- Wetting and swelling of bentonite
- Stress-induced fracture opening or closure with associated permeability change
- Drying and shrinkage
- Heating of bentonite and rock
- Vapor flow along thermal gradient away from heat source

PA Model of Entire Repository

Example layout from the Swiss Concept (Seiphoori, 2015)
Example of Long-term Coupled Processes Simulation of an Emplacement Tunnel

- Time to peak thermal impact?
- Time to full saturation and swelling?

Rutqvist et al., (2014)
Example of Long-term Coupled Processes
Simulation of an Emplacement Tunnel

- Time to peak thermal impact?
- Time to full saturation and swelling?
Field Observations of Excavation Disturbed Zone (EDZ) in Argillite

• Site specific, i.e. different at Mont Terri and Bure
• Depends on the tunnel direction relative to beddings and stress field

Example from Bure:

Zone of open fractures \(k \approx 1 \times 10^{-17} \text{ m}^2 \) (3-4 orders increase)

(Armand et al., 2014)

• Sealing and healing observed in laboratory tests and in situ, but underlying mechanisms are not fully understood
State of the Art and R&D Needs for THM Perturbation in Argillite/Bentonite

- **THM model framework established (TOUGH-FLAC)**

- Constitutive models for bentonite/backfill
 - BBM established, whereas BExM is at the forefront of research for dual-structural behavior
 - Impact of constitutive bentonite behavior on longer-term buffer resaturation processes still not fully understood

- **Constitutive THM models for argillite host rocks**
 - Anisotropic shale THM constitutive model validated

- **Models for EDZ in argillite**
 - Continuum permeability change and damage models, as well as discrete fracture models have been applied
 - No established model for damage, sealing and healing
 - Site specific studies at Mont Terri and Bure URLs

- **Very active research in European Programs**
 - Switzerland, France, Belgium, Germany, UK,……
Potential Future DECOVALEX-2023 Task (Thermal-pressurization Fracturing)

Task proposed by ANDRA for DECOVALEX-2023 with field data from Bure URL

Top View of borehole array
Summary

• Much progress has been accomplished in understanding thermo-hydro-mechanical (THM) perturbation in bentonite/argillite, through international research collaborations.

• Advanced numerical modeling tools have been developed and underground experiments provide data for model testing and validation at a relevant scale.

• Modeling of such experiments has shown that thermal processes can be predicted with confidence, whereas hydraulics and mechanics are more uncertain.

• Model input parameters for bentonite and Argillite can be up-scaled from laboratory data, but certain parameters, such as those for the excavation disturbed zone are best characterized in situ.
References

Vilarrasa V., Rutqvist J., Blanco-Martin L. and Birkholzer J. Use of a dual structure constitutive model for predicting the long-term behavior of an expansive clay buffer in a nuclear waste repository. ASCE’s International Journal of Geomechanics, 16, article number D4015005 (2016).
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALC</td>
<td>Micro-tunnel experiment at Bure</td>
</tr>
<tr>
<td>ANDRA</td>
<td>National Radioactive Waste Management Agency, France</td>
</tr>
<tr>
<td>BExM</td>
<td>Barcelona Expansive Model</td>
</tr>
<tr>
<td>BBM</td>
<td>Barcelona Basic Model</td>
</tr>
<tr>
<td>BGR</td>
<td>Federal Institute for Geosciences & Natural Resources, Germany</td>
</tr>
<tr>
<td>CAS</td>
<td>Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>CNSC</td>
<td>Canadian Nuclear Safety Commission, Canada</td>
</tr>
<tr>
<td>COx</td>
<td>Callovo-Oxfordian claystone</td>
</tr>
<tr>
<td>DECOVALEX</td>
<td>DEvelopment of COupled Models and their VALidation Against EXperiments</td>
</tr>
<tr>
<td>EBS</td>
<td>Engineered Barrier System</td>
</tr>
<tr>
<td>EDZ</td>
<td>Excavation Damage Zone (or Excavation Disturbed Zone)</td>
</tr>
<tr>
<td>ENSI</td>
<td>Swiss Federal Nuclear Safety Inspectorate, Switzerland</td>
</tr>
<tr>
<td>FE</td>
<td>Full-scale Emplacement Experiment at Mont Terri</td>
</tr>
<tr>
<td>FEPs</td>
<td>Features, Events, and Processes</td>
</tr>
<tr>
<td>FLAC</td>
<td>Fast Lagrangian Analysis of Continua</td>
</tr>
<tr>
<td>GDSA</td>
<td>Geological Disposal Safety Assessment</td>
</tr>
<tr>
<td>HE-E</td>
<td>Half-scale heater experiment at Mont Terri</td>
</tr>
<tr>
<td>KAERI</td>
<td>Korea Atomic Energy Research Institute, Republic of Korea</td>
</tr>
<tr>
<td>LBNL</td>
<td>Lawrence Berkeley National Laboratory</td>
</tr>
<tr>
<td>NAGRA</td>
<td>Swiss waste management organization</td>
</tr>
<tr>
<td>PA</td>
<td>Performance Assessment</td>
</tr>
<tr>
<td>Swisstopo</td>
<td>Federal Office of Topography, Switzerland</td>
</tr>
<tr>
<td>TED</td>
<td>Thermal Experiment</td>
</tr>
<tr>
<td>THM</td>
<td>Thermo-hydro-mechanical</td>
</tr>
<tr>
<td>THMC</td>
<td>Thermo-hydro-mechanical-chemical</td>
</tr>
<tr>
<td>TOUGH</td>
<td>Transport Of Unsaturated Groundwater and Heat</td>
</tr>
</tbody>
</table>
Questions?