Thermal-Hydraulic Measurements in Support of Model Validation for Dry Cask Storage

Sam Durbin, Eric Lindgren, and Ramon Pulido
Sandia National Laboratories

Nuclear Waste Technical Review Board
Albuquerque, NM
October 24, 2018
Overview

- **Purpose**: Validate assumptions in CFD calculations for spent fuel cask thermal design analyses
 - Used to determine steady-state cladding temperatures in dry casks
 - Needed to evaluate cladding integrity throughout storage cycle
- **Measure temperature profiles for a wide range of decay power and helium cask pressures**
 - Mimic conditions for above and belowground configurations of vertical, dry cask systems with canisters
 - Simplified geometry with well-controlled boundary conditions
 - Provide measure of mass flow rates and temperatures throughout system
- **Use existing prototypic BWR Incoloy-clad test assembly**
Past Validation Efforts

- **Full scale, multi-assembly**
 - Castor-V/21 [1986: EPRI NP-4887, PNL-5917]
 - Unconsolidated, unpressurized, unventilated
 - REA 2023 [1986: PNL-5777 Vol. 1]
 - Unconsolidated, unpressurized, unventilated
 - VSC-17 [1992: EPRI TR-100305, PNL-7839]
 - Consolidated, unpressurized, early ventilated design

- **Small scale, single assembly**
 - FTT (irradiated, vertical) [1986 PNL-5571]
 - SAHTT (electric, vertical & horizontal) [1986 PNL-5571]
 - Mitsubishi (electric, vertical & horizontal) [1986 IAEA-SM-286/139P]
 - For all three studies:
 - Unconsolidated
 - BC: Controlled outer wall temperature (unventilated)
 - Unpressurized

- **None** appropriate for elevated helium pressures or modern ventilated configurations
Current Approach

- **Focus on pressurized canister systems**
 - DCS capable of 2,400 kPa internal pressure @ 400 °C
 - Current commercial designs up to ~800 kPa
- **Ventilated designs**
 - Aboveground configuration
 - Belowground configuration
 - With crosswind conditions
- **Thermocouple (TC) attachment allows better peak cladding temperature measurement**
 - 0.030” diameter sheath
 - Tip in direct contact with cladding
- **Provide validation quality data for CFD**
 - Complimentary to High-Burnup Cask Demo. Project
DCS Pressure Vessel Hardware

- Scaled components with instrumentation well
- Coated with ultra high temperature paint
Prototypic Assembly Hardware

- Most common 9×9 BWR in US
- Prototypic 9×9 BWR hardware
 - Full length, prototypic 9×9 BWR components
 - Electric heater rods with Incoloy cladding
 - 74 fuel rods
 - 8 of these are partial length
 - Partial length rods 2/3 the length of assembly
 - 2 water rods
 - 7 spacers

Upper tie plate

Nose piece and debris catcher

BWR channel, water tubes and spacers
Thermocouple Layout

- 97 total TC’s internal to assembly
- 10 TC’s mounted to channel box
 - 7 External wall
 - 24 in. spacing starting at 24 in. level
 - 3 Internal wall
 - 96, 119, and 144 in. levels

Internal Thermocouples

Radial Array
- 24” spacing
- 11 TC’s each level
- 66 TC’s total (details below)

Axial array A1
- 6” spacing
- 20 TC’s

Axial array A2
- 12” spacing – 7 TC’s
- Water rods inlet and exit – 4 TC’s
- Total of 97 TC’s

- 24” & 96” levels
- 48” & 119” levels
- 72” & 144” levels
Internal Dimensional Analyses

- Internal flow and convection near prototypic
 - Prototypic geometry for fuel and basket
- Downcomer scaling insensitive to wide range of decay heats
 - External cooling flows matched using elevated decay heat
 - Downcomer dimensionless groups

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DCS Low Power</th>
<th>DCS High Power</th>
<th>Cask</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power (kW)</td>
<td>0.5</td>
<td>5.0</td>
<td>36.9</td>
</tr>
<tr>
<td>Re_{Down}</td>
<td>170</td>
<td>190</td>
<td>250</td>
</tr>
<tr>
<td>Ra_{H}</td>
<td>3.1E+11</td>
<td>5.9E+11</td>
<td>4.6E+11</td>
</tr>
<tr>
<td>Nu_{H}</td>
<td>200</td>
<td>230</td>
<td>200</td>
</tr>
</tbody>
</table>
External Dimensional Analyses

• External cooling flows evaluated against prototypic
 – External dimensionless groups

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Aboveground</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DCS Low Power</td>
</tr>
<tr>
<td>Power (kW)</td>
<td>0.5</td>
</tr>
<tr>
<td>Re_{Ex}</td>
<td>3,700</td>
</tr>
<tr>
<td>Ra_{DH}^{*}</td>
<td>2.7E+08</td>
</tr>
<tr>
<td>(D_{H, Cooling}/H_{PV}) × Ra_{DH}^{*}</td>
<td>1.1E+07</td>
</tr>
<tr>
<td>Nu_{DH}</td>
<td>16</td>
</tr>
</tbody>
</table>
Aboveground Configuration

• BWR Dry Cask Simulator (DCS) system capabilities
 – Power: 0.1 – 20 kW
 – Pressure vessel
 • Vessel temperatures up to 400 °C
 • Pressures up to 2,400 kPa
 • ~200 thermocouples throughout system (internal and external)
 – Air velocity measurements at inlets
 • Calculate external mass flow rate
 • **Testing Completed August 2016**
 – 14 data sets collected
 • Transient and steady state
 – Ongoing validation exercises
Steady State Values vs. Decay Heat
Aboveground Configuration

- PCT and air flow ↑ as simulated decay heat ↑
 - Significant increase in PCT for P = 0.3 kPa
 - Due to air in “canister” instead of helium
Graphical Steady State Comparisons
Aboveground Configuration

- PCT average difference of 2 K across all conditions
 - 95% exp. uncertainty
 - +/- 1% reading in Kelvin
 - \(U_{\text{PCT, max}} = 7 \text{ K} \)
 - Max. observed difference = 9 K
 - (5 kW and 4.5 bar)

- Air flow rate average difference of 6.2E-4 kg/s for all conditions
 - 95% exp. uncertainty of \(U_{\dot{m}} = 1.5E-3 \text{ kg/s} \)
 - Max. observed difference = -1.6E-3 kg/s
 - (5 kW and 800 kPa)
Belowground Configuration

- Modification to aboveground ventilation configuration
 - Additional annular flow path
- **Testing Completed April 2017**
 - 14 data sets recorded
 - Transient and steady state
Steady State Values vs. Decay Heat
Belowground Configuration

• Similar performance to aboveground configuration
 – Within 2% for PCT
 – Within 5% for \dot{m}
Graphical Steady State Comparisons
Belowground Configuration

- PCT average difference of 6 K across all conditions
 - 95% exp. uncertainty of $U_{PCT, \text{max}} = 7$ K
 - Max. observed difference = 16 K
 - (5 kW and 100 kPa)
- Air flow rate lower for experiment
 - 95% exp. uncertainty of $U_{\text{m}} = 7 \times 10^{-4}$ kg/s
 - Max. observed difference = 5E-3 kg/s
 - (5 kW and 450 bar)

Non-uniformities at flow straightener seams
Cross Wind Testing

- Wind machine installed inside test enclosure
 - Three air-driven blowers
 - Specially fabricated duct with flow straightening
 - Cross winds of up to 5.4 m/s (12 mph)

CFD simulations
by A. Zigh (USNRC)
Moderate, sustained cross winds have significant impact on external air mass flow rate:
- Reductions of up to 50%
- Thermal impact limited for DCS
- Potentially more significant effect for prototypic systems
Summary

- Dry cask simulator (DCS) testing complete for all configurations
 - Over 40 unique data sets collected
 - 14 each for two primary configurations
 - Aboveground and belowground
 - 13 additional data sets for cross-wind testing
- Comparisons with CFD simulations show favorable agreement
 - Within experimental uncertainty for nearly all cases
 - Additional steady state comparisons for basket, “canister”, and “overpack” also show good agreement
Future Testing
Thermal-Hydraulic Testing and Modeling Activities

- **Phase I: BWR Dry Cask Simulator at SNL**
 - Mockup of 1 BWR assembly in convective heat transfer
 - Thermocouples attached directly to cladding
 - NRC has modeled the results
 - PNNL and Spain to model using the input deck provided by SNL

- **Phase II: HBU Demonstration Cask**
 - Multiple activities as outlined previously

- **Phase III: Ongoing and Future Thermal-Hydraulic Studies**
 - Horizontal Dry Cask Simulator
 - Advanced simulators
 - Potential collaboration with South Korea under the High Level Bilateral Commission studies

Previous SNL slides

Ongoing Work

Previous PNNL Presentation

These slides
Modification of the Dry Cask Simulator

• Horizontal Simulation
 – Place single assembly dry cask simulator in a horizontal position
 – Enclose pressure vessel to simulate vault
 – Monitor air flow through inlet ducts
 • Hot wire anemometers
 – Measure temperatures for various powers
 • Fill to prototypic internal helium pressures
Assembly Modifications

- DCS presently deconstructed
- Convert to horizontal
 - Outer shell and inner shells removed
 - Pressure vessel opened
 - Basket removed
- Maintain concentricity and enhance heat conduction
 - Add stabilizers
 - Between channel box and basket
 - Between basket and canister wall
 - Full length to limit convective cells
 - Keep from damaging existing TC’s
- Reassemble and move
Facility Transition

- After performing in-vessel modifications
- Move DCS from inside vessel to the 3rd floor
- GENTLY rotate assembly to horizontal configuration
- Construct “vault” enclosure
 - Inlet and outlets
- Install additional instrumentation
- Reconnect to DAQ
 - Power control
 - Instrumentation
- Conduct testing
Advanced Simulators

• Explore various concepts
 – Limited number of full-length assemblies
 • Inter-assembly heat transfer
 – Scaled assemblies
 • Simplified but representative mock fuel assemblies
 • Better simulation of prototypic cask loadings

• Investigate known sources of modeling uncertainties
 – Basket-to-canister contacts
 – Boral construction

• Refine best practice guidelines
 – Offer insights for selection of modeling assumptions
 – Further understanding of uncertainties