Drilling & Well Construction Considerations

Presentation during NWTRB Deep Borehole Workshop, 10/20/2015

Dr. Eric van Oort
Lancaster Professor, UT Austin
Agenda

Drilling & Well Construction Considerations

– Bits
– Drillstring Vibrations
– Vertical Directional Drilling
– Stuck Pipe
– Isolation & Abandonment

Source: Deep Borehole Field Test: Characterization Borehole Science Objectives, Kuhlman et al., 2015
Hole-Making Response by Different Bits

Polycrystalline Diamond Compact (PDC) bit

Tri-cone Rock bit with Tungsten Carbide Inserts (TCI)

Different cutting action, different ROP response

Rate of Penetration of Various Bits in Crab Orchard Sandstone Water and 11 ppg Water-Base Drilling Fluid at 110 to 120 RPM

Full scale tests of 6” bits at 10,000 psi

ROP = Rate of Penetration
WOB = Weight on Bit

Source: Judzis et al., SPE/IADC 105885

© Dr. Eric van Oort
Bit Selection

<table>
<thead>
<tr>
<th>Formation Description</th>
<th>Unconfined Compressive Strength</th>
<th>Suitable for Milled Tooth?</th>
<th>Suitable for TCI?</th>
<th>Suitable for PDC?</th>
<th>Suitable for Diamond Impreg?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Soft</td>
<td>< 4,000 psi</td>
<td>Yes</td>
<td>No*</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Soft</td>
<td>4,000 – 9,000 psi</td>
<td>Yes</td>
<td>No*</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Medium</td>
<td>9,000 – 15,000 psi</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Hard</td>
<td>15,000 – 22,000 psi</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Very Hard</td>
<td>> 22,000 psi</td>
<td>No</td>
<td>Yes</td>
<td>Possibly</td>
<td>Yes</td>
</tr>
</tbody>
</table>

*Application of TCI is possible but would not be economically preferred

Selection Methodology

- Consider formation hardness and eliminate unsuitable bit types
- Consider bit economics using ROP, time savings, rig costs and bit prices
- Consider the requirements of special factors such as directional requirements
- Note that the operating envelope for PDC’s continues to expand

© Dr. Eric van Oort
Heterogeneous Formations: Kymera Bits

Kymera (Chimaera) Hybrid Bits:
• Recently developed bits that “marry” essential features of roller cones and PDC bits
• Meant to drill in relatively large-diameter hole in medium/hard formations (use of PDC) that are interspersed with high-strength stringers, e.g. chert (use of roller cone)

© Dr. Eric van Oort

Source: Pessier and Damschen, 2010
Dynamic Dysfunctions: Vibrations

- Drilling rock is a destructive process, using heavy, high inertia drilling components that are moving at high velocities
- Some level of vibration is always present in every drilling operation
- If uncontrolled, vibration leads to dysfunction (impaired/abnormal functioning)
 - Axial Dysfunction: Bit Bounce
 - Lateral Dysfunction: Whirl (Bit and/or BHA)
 - Torsional Dysfunction: Stick-Slip
- Results of dysfunction include:
 - Low / limited ROP (wasted energy, premature bit dulling)
 - Reduced bit life, increased number of bit runs and associated trips
 - Fatigue accumulation, wash-outs and twist-offs because of cyclic stresses
 - MWD / LWD failures due to high-G shock loading
- Dynamic dysfunction is the most limiting factor in achieving optimum ROP and minimizing bit runs

<table>
<thead>
<tr>
<th>Vibration Mode</th>
<th>Dysfunction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial</td>
<td>Bit Bounce</td>
</tr>
<tr>
<td>Torsional</td>
<td>Stick-Slip</td>
</tr>
<tr>
<td>Lateral</td>
<td>Bit Whirl</td>
</tr>
<tr>
<td></td>
<td>BHA Whirl</td>
</tr>
</tbody>
</table>

© Dr. Eric van Oort
Chaotic Whirl Vibrations

Video courtesy of Schlumberger, Inc.

© Dr. Eric van Oort
Chaotic Whirl Vibrations

Tool rotating clockwise and progressing around the hole clockwise

Video courtesy of Schlumberger, Inc.

© Dr. Eric van Oort
Chaotic Whirl Vibrations

Video courtesy of Schlumberger, Inc.

© Dr. Eric van Oort
Chaotic Whirl Vibrations

Video courtesy of Schlumberger, Inc.

© Dr. Eric van Oort
Chaotic Whirl Vibrations

Video courtesy of Schlumberger, Inc.
Vertical Directional Drilling

Well dogleg severity and tortuosity will need to be minimized, which will require directional drilling techniques (downhole motors/turbines, rotary steerables, accurate surveying!) to keep the well as vertical as possible (e.g. DLS < 1 deg./100 ft)

Factors affecting bit trajectory

• Gauge and placement of stabilizers
• Diameter & length of (sections of) drill collars
• Weight on bit
• Rotary speed
• Bit type & bit gauge length
• Formation anisotropy and dip angle
• Formation hardness (& tendency to wash/break out)
• Flow rate
• Rate of penetration
Well Construction & Abandonment

Source: Deep Borehole Field Test Specifications, Sandia National Laboratories

© Dr. Eric van Oort
“Stuck canisters” is a particular concern when running waste canisters into an open hole that is not stable or has high (local) tortuosity – it does not take much to “wedge” a canister with a caving (0.25” – 0.9” radial clearance)
Well Isolation & Abandonment

Well Abandonment considerations:

- Offshore abandonments set a high standard for abandonments in general and are recommended as a minimum for nuclear waste disposal wells (250 CFR 1712-1717 & 1721)
- Barriers will need to be explicitly evaluated and possibly monitored continuously
- How safe is an “open-hole completion” around the waste canisters?
- Cement may not be the most versatile material to use in abandonments (see next slide)
- What about potential well re-entry and intervention?

Source: 250 CFR 1715
Plugs using Self Healing Materials

- Traditional Portland cement has many drawbacks:
 - It is sensitive to mud and formation fluid contamination
 - It does not bond particularly well to formations, particularly those that are clay-rich due to high-alkalinity, lime-based chemistry
 - It has low tensile strength
 - When (micro-)annuli, cracks or fractures are formed, Portland has no ability to re-heal them after its set time period
 - New materials should be explored – and are becoming available – that overcome many of these problems and are self-healing

Self Healing Cement
3 day compressive strength = 1100 psi @ failure
Failed sample retested at 21 days = 1200 psi
Conclusions and Recommendations

• The project needs a more detailed drilling program!
• The project would benefit technically and economically from bit-expertise and consideration of the latest in bit developments
• Harmful drillstring vibrations should be monitored (with downhole accelerometers and surface MSE) and mitigated
• Borehole quality, tortuosity and gauge are very important, and will require vertical directional drilling and excellent surveying techniques (e.g. continuous gyro)
• Stuck canister risk may exist in an unstable open hole or tortuous hole with high local dogleg severity, requiring risk mitigation
• Well abandonment and barrier installation / monitoring should be executed to the highest possible standard
• Self-healing alternatives of Portland cement should be explored for use in abandonment
Q & A
Optimum Drilling Beyond Efficient Drilling

Performance enhanced by redesigning to extend founder point

MSE Equation

\[
E_s = \frac{W}{A_b} + \frac{120\pi TN}{PA_b}
\]

In the Efficiency envelope the torque/ROP ratio is nearly constant, so MSE is nearly constant.

Optimum drilling is at the edge of the Efficiency envelope.