DOE Deep Borehole Field Test: Site Characterization and Design Requirements

David Sassani
Principal Member of Technical Staff,
Ernest Hardin
Distinguished Member of Technical Staff,
Sandia National Laboratories
DOE Office of Nuclear Energy Used Nuclear Fuel Disposition R&D Campaign

International Technical Workshop on Deep Borehole Disposal of Radioactive Waste
U.S. Nuclear Waste Technical Review Board
Washington, D.C., October 20-21, 2015
Presentation Outline

- Deep Borehole Field Test (DBFT) Team
- Deep Borehole Disposal (DBD) Concept Geologic Conditions
 - Hydrogeologic information at depth
 - Geochemical information at depth
- Assessing the DBD Concept Feasibility
- Site Characterization Approaches
 - Geohydrologic, Geochemical, Geomechanical
- Use of DBFT Characterization Data
- Waste Packaging, Emplacement and Seals Testing (E. Hardin)
Site Evaluation, Characterization, and Data Integration Team Members

- **DOE NE-53**
 - Tim Gunter, Federal Program Manager
 - Lam Xuan, Program Lead

- **SNL – DBFT Project Technical Lead**
 - Bob MacKinnon, Manager
 - Geoff Freeze, Project Lead and Safety Assessment
 - David Sassani, Site Evaluation and Data Integration Lead
 - Kris Kuhlman, Site Characterization Lead
 - Ernie Hardin, Test Package/Emplacement Engineering Lead

- **DBFT Laboratory Participants**
 - LANL – Regional geology, geoscience, site characterization
 - LBNL – Geoscience, site characterization
 - ORNL – Surface site characteristics, GIS (OR-SAGE)
 - INL – Web visualization/interface for geoscience data
 - PNNL – Engineering design support
Deep Borehole Disposal Concept – Safety and Feasibility Considerations

Long-Term Waste Isolation (hydrogeochemical characteristics)

Waste emplacement is deep in crystalline basement
- At least 1,000 m of crystalline rock (seal zone) overlying the waste disposal zone
- Crystalline basement within 2,000 m of the surface is common in many stable continental regions

Crystalline basement can have very low permeability – limits flow and transport

Deep groundwater in the crystalline basement:
- Can have very long residence times – isolated from shallow groundwater
- Can be highly saline and geochemically reducing – enhances the sorption and limits solubility of many radionuclides
- Can have density stratification (saline groundwater underlying fresh groundwater) – opposes thermally-induced upward groundwater convection

D. Sassani and E. Hardin, NWTRB 20 Oct 2015; SAND2015-8753 PE
Geologic conditions that are undesirable for the deep borehole disposal concept and waste isolation:

- Interconnected high-permeability zone(s) (e.g., shear zone, fracture) from the waste disposal interval to the surface or shallow aquifer
- High degree of heterogeneity in crystalline basement
- At depths of greater than 3 km (i.e., in disposal interval):
 - Young meteoric groundwater
 - Low-salinity, oxidizing groundwater
 - Economically exploitable natural resources
 - Significant upward gradient in fluid potential (over-pressured conditions)
- High geothermal heat flow

Additionally, high differential horizontal stresses are undesirable for borehole completion and disposal operations

Absent these unfavorable features

- Potential scenarios for radionuclide release to the biosphere include
 - thermally driven groundwater flow (from waste heat), or simply diffusive flux, through the borehole seals and/or along the disturbed rock zone annulus

D. Sassani and E. Hardin, NWTRB 20 Oct 2015; SAND2015-8753 PE
Geochemical Considerations

- Reduced, or reducing, conditions in the geosphere (rock and water system)
 - *Crystalline basement mineralogical (and material) controls*
 - Steels in borehole will provide reducing capacity (H$_2$ source)
 - Rock dominated system at depth
 - *Fluid composition deep in crystalline basement*
 - Major elements – brine at depth
 - Stable isotopes, radiogenic isotopes, noble gases indicating long-term isolated nature of fluids
 - Subset of waste forms and radionuclides are redox sensitive
 - *Lower degradation rates*
 - *Lower solubility-limited concentrations*
 - *Increased sorption coefficients*
 - Stratification of salinity – increasing to brine deep in crystalline basement
 - *Density gradient opposes upward flow*
 - *Reduces/eliminates colloidal transport*
Geohydrological Considerations

- No large-scale connected pathways from depth to aquifer systems
 - No through going fracture/fault/shear zones that provide fast paths
 - No structural features that provide potential connective pathways
 - Seeking lower heterogeneity in crystalline basement
- Low permeability of crystalline basement at depth
- Evidence of ancient, isolated nature of basement groundwater
 - Salinity gradient increasing downward to brine at depth
 - Limited recharge/connectivity with surface waters/aquifers
 - Provides density resistance to upward flow
 - Major element and isotopic indications of compositional equilibration with rock
 - Crystalline basement reacting with water to affect major elements indicating rock-dominated fluid composition
 - Ancient/isolated groundwater from isotopes, noble gases indicating long-term isolated nature of fluids – minimal recharge
Deep Crystalline Drilling

![Deep Crystalline Drilling](image)

Site Details

<table>
<thead>
<tr>
<th>Site</th>
<th>Bores</th>
<th>Location</th>
<th>Years</th>
<th>Depth [km]</th>
<th>Diam* [in]</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kola SG-3</td>
<td>1</td>
<td>NW USSR</td>
<td>1970-1992</td>
<td>12.2</td>
<td>8½</td>
<td>Geologic Exploration + Technology Development</td>
</tr>
<tr>
<td>Fenton Hill</td>
<td>3</td>
<td>New Mexico</td>
<td>1975-1987</td>
<td>3, 4.2, 4.6</td>
<td>8¾, 9¾</td>
<td>Enhanced Geothermal</td>
</tr>
<tr>
<td>Urach-3</td>
<td>1</td>
<td>SW Germany</td>
<td>1978-1992</td>
<td>4.4</td>
<td>5½</td>
<td>Enhanced Geothermal</td>
</tr>
<tr>
<td>Cajon Pass</td>
<td>1</td>
<td>California</td>
<td>1987-1988</td>
<td>3.5</td>
<td>6¼</td>
<td>San Andreas Fault Exploration</td>
</tr>
<tr>
<td>KTB</td>
<td>2</td>
<td>SE Germany</td>
<td>1987-1994</td>
<td>4, 9.1</td>
<td>6, 6½</td>
<td>Geologic Exploration + Technology Development</td>
</tr>
<tr>
<td>Soultz-sous-Forêts GPK</td>
<td>3</td>
<td>NE France</td>
<td>1995-2003</td>
<td>5.1, 5.1, 5.3</td>
<td>9%</td>
<td>Enhanced Geothermal</td>
</tr>
<tr>
<td>SAFOD</td>
<td>2</td>
<td>Central California</td>
<td>2002-2007</td>
<td>2.2, 4</td>
<td>8½, 8¾</td>
<td>San Andreas Fault Exploration</td>
</tr>
<tr>
<td>Basel-1</td>
<td>1</td>
<td>Switzerland</td>
<td>2006</td>
<td>5</td>
<td>8½</td>
<td>Enhanced Geothermal</td>
</tr>
</tbody>
</table>

* *borehole diameter at total depth

D. Sassani and E. Hardin, NWTRB 20 Oct 2015; SAND2015-8753 PE
Planned Activities to Evaluate Feasibility of Deep Borehole Disposal Concept

- Select a suitable site
- Design, drill, and construct the characterization borehole (CB) to requirements
- Collect data in the CB needed to characterize crystalline basement conditions and confirm, with acceptable uncertainty, expected hydrogeochemical conditions
- Design, drill, and construct the field test borehole (FTB) to requirements
- Design and develop surface handling and emplacement systems and operational methods for safe canister/WP handling and emplacement
- Verify through hazard analysis that handling and emplacement operations canister/WP handling and emplacement have sufficiently low risk

D. Sassani and E. Hardin, NWTRB 20 Oct 2015; SAND2015-8753 PE
Demonstrate safe surface handling, and emplacement and retrieval operations in the FTB.

Conduct laboratory studies of engineered materials under representative downhole conditions to provide a technical basis, with acceptable uncertainties, for predicting evolution of the system.

Conduct subsystem analyses and a post-closure safety assessment, including quantification of uncertainties, and demonstrate understanding of key processes and safety of the concept.

Conduct a cost analysis verifying acceptable costs of concept implementation.

Synthesize above elements into a comprehensive and transparent evaluation of the feasibility of the Deep Borehole Concept.
Objectives of the Deep Borehole Field Test

Synthesize field test activities, test results, and analyses into a comprehensive evaluation of concept feasibility

Evaluate site

Design and construct characterization borehole then field test borehole

Develop and test systems for handling, emplacing, and retrieving WPs

Design and test WPs

Emplacement hazard analysis

Design seal system

Evaluate WP, WF, casing, cement, and seal materials

In situ thermal test

Assess post-closure safety

In no case will the US Government place or otherwise have nuclear material, waste, or other waste disposal material on the property (RFP 2015).

Characterize crystalline basement, fluids, and hydrologic conditions

Characterize the borehole disturbed rock zone (DRZ)

Characterize overlying sediments, fluids, and hydrologic conditions

D. Sassani and E. Hardin, NWTRB 20 Oct 2015; SAND2015-8753 PE
Characterization for DBFT is different from:

- Mined waste repositories
 - More geologic isolation – less “site mapping”
 - Single-phase fluid flow
 - Less steep pressure gradients

- Oil/gas or mineral exploration
 - Crystalline basement vs sedimentary rocks
 - Low-permeability
 - Avoid mineralization
 - Avoid overpressure

- Geothermal exploration
 - Low geothermal gradient
Characterization
Borehole: Profile Data

- **Borehole Geophysics**
 - Coring/Cuttings/Rock Flour
 - Mineralogy/petrology
 - Fluid samples from cores
 - *Bulk composition (salinity; rock equilibration)*

- **Sample-based Profiles**
 - Fluid density/temperature/major ions
 - Pumped samples from high-\(k\) regions
 - Samples from cores in low-\(k\) regions

- **Drilling Parameters Logging**
 - Mud fluids/solids/dissolved gases
 - Torque, weight-on-bit, etc.

- **Testing-Based Profiles**
 - Static formation pressure
 - Formation hydraulic/transport properties
 - *In situ* stress (hydrofrac + breakouts)
Environmental Tracers

Vertical Profiles
- Noble gases (He, Ne, etc.)
- Stable water isotopes
 - Oxygen; hydrogen
- Atmospheric radioisotope tracers (e.g., 81Kr, 129I, 36Cl)
- 238U/234U ratios
- 87Sr/86Sr ratios

Long-Term Data
- Water provenance
- Flow mechanisms/isolation

Minerals → pores → fractures (evaluate the "leakiness")

Fluid Sample Quality + Quantity will be a Focus!
Repeatability between drill-stem testing, packer & core samples?

D. Sassani and E. Hardin, NWTRB 20 Oct 2015; SAND2015-8753 PE
Hydrogeologic Testing

- Hydrologic Property Profiles
 - Static formation pressure
 - Permeability / compressibility
 - *Pumping/sampling in high k*
 - *Pulse testing in low k*

- Borehole Tracer Tests
 - Single-well injection-withdrawal
 - Vertical dipole
 - Understand transport pathways

- Hydraulic Fracturing Tests
 - σ_h magnitude

- Borehole Heater Test
 - Surrogate canister with heater in the crystalline basement

D. Sassani and E. Hardin, NWTRB 20 Oct 2015; SAND2015-8753 PE
Deep Borehole Field Test Characterization Data Inform the Post-Closure Safety Assessment

- Evaluate site
- Design and construct characterization borehole then field test borehole
- Design and test WPs
- Develop and test systems for handling, emplacing, and retrieving WPs
- Characterize overlying sediments, fluids, and hydrologic conditions
- Characterize the borehole DRZ
- Characterize crystalline basement, fluids, and hydrologic conditions
- Assess post-closure safety
- In situ thermal test
- Design seal system
- Evaluate WP, WF, casing, cement, and seal materials
- Emplacement hazard analysis

In no case will the US Government place or otherwise have nuclear material, waste, or other waste disposal material on the property (RFP 2015).

D. Sassani and E. Hardin, NWTRB 20 Oct 2015; SAND2015-8753 PE
Objectives of the Deep Borehole Field Test

Synthesize field test activities, test results, and analyses into a comprehensive evaluation of concept feasibility

- **Evaluate site**
 - Design and construct characterization borehole then field test borehole

- **Characterize**
 - Overlying sediments, fluids, and hydrologic conditions
 - Borehole disturbed rock zone (DRZ)
 - Bedrock, fluids, and hydrologic conditions

- **Develop and test systems**
 - Handling, emplacing, and retrieving waste packages (WPs)
 - Emplacement hazard analysis
 - Design seal system
 - Design and test WPs
 - Evaluate WP, waste form, casing, cement, and seal materials
 - In situ thermal test

- **Assess post-closure safety**

- **In no case will the US Government place or otherwise have nuclear material, waste, or other waste disposal material on the property (RFP 2015).**

D. Sassani and E. Hardin, NWTRB 20 Oct 2015; SAND2015-8753 PE
Field Test Borehole

- Disposal borehole diameter/plan
- Demonstrate emplacement and test canisters
- Casing removal
- 17-inch diameter at a few km depth in hard rock is not uncommon for geothermal

(Companion figure to the Characterization Borehole, Slide 13.)
1. Deep Borehole Field Test (DBFT) objectives
2. Handling and emplacement system options
 - Previous test: Spent Fuel Test–Climax
 - Wireline emplacement
 - Drill-string emplacement
3. Test (waste) package concepts and analysis
4. Cost-risk study for emplacement concept selection
 - Preclosure risk insights
 - Recommendation: wireline emplacement
5. Conceptual design questions
6. Sealing technology R&D
Spent Fuel Test – Climax (1978-1983)

Waste package containing irradiated commercial reactor fuel assembly being lowered through shipping cask into borehole, leading to Climax Mine
Wireline Emplacement Concept: Surface Arrangement

• Blow-out preventer (BOP) shield
• Packages lowered one-at-a-time
• After up to 40 packages are emplaced, set a cement plug to support more packages

[Diagram of wireline emplacement setup]

Video

D. Sassani and E. Hardin, NWTRB 20 Oct 2015; SAND2015-8753 PE
Drill-String Emplacement: Rig & Basement Elevation

- **Rig capacities:**
 - Triple pipe stands (90 ft)
 - >500,000 lb working load
 - Automatic pipe handling and joint makeup
- **Shielded shipping cask:**
 - Length ~22 ft, weight ~30 tons
- **Upper and lower cask doors**
- **Transfer carrier**
- **Subgrade basement**
 - Power slips/tongs
 - Mud surge control
 - Blowout preventer

D. Sassani and E. Hardin, NWTRB 20 Oct 2015; SAND2015-8753 PE
Drill-String Emplacement Concept: Equipment Arrangement

- Double-ended cask
- Transfer carrier to wellhead
- Up to 40 packages are assembled in a string, and emplaced
- Cement plug is placed to support more strings
Cask and Shielded Basement Arrangement

- Upper hinged door
- Range-limiting restraints (not visible)
- Rotation restraints (not visible)
- Lower sliding doors
- Shield door (not visible)
- Upper tongs (torque)
- Power slips (weight-bearing)
- Lower tongs (counter-torque)
- Mud-transfer equipment
- "Elevator" ram (slips backup)
- Blowout preventer stack

D. Sassani and E. Hardin, NWTRB 20 Oct 2015; SAND2015-8753 PE
Packaging Concept for Bulk Waste

WELDED TOP BOX
WITH FILL PORT (4.75” DIA)
AND THREADED PLUG
NC77 DRILL PIPE THREAD

12” THICK SHIELDING

WASTE

10 ¾” OD

8 ¾” ID

WELDED BOTTOM PIN
NC77 DRILL PIPE THREAD

D. Sassani and E. Hardin, NWTRB 20 Oct 2015; SAND2015-8753 PE
Packaging Concept (Small) for Cs/Sr Capsules

- Material: API* P110 (hardened/tempered, ≥ 110 ksi yield)
- Fabrication: machined, friction welded
- Sealing: threaded plug, metal-metal seal, welded cover
- Also proposed: internal-flush overpacks for pre-canistered Cs/Sr capsules or other waste forms

* American Petroleum Institute

- Welded API* NC38 connection
- 5” OD x 4” ID
- 19,800 psi collapse pressure

Number of capsules per package adjustable up to 8 (→18.5-ft overall length)
Upper and Lower Subs Attached to Each Package, for Wireline Emplacement

- BOX CONNECTOR
- CRUMPLE ZONE
- PIN CONNECTOR
- WIRELINE LATCH
- FISHING OVERSHOOT LATCH POINTS
Safety of Disposal Operations

- Deep Borehole Field Test vs. Potential Future Disposal System
 - DBFT will have zero radiological risk
- Accident Prevention During Emplacement Operations
 - DBFT conceptual design: safety analysis that discriminates between alternative concepts
- Example Types of Emplacement Accidents (disposal system)
 - Single canister drop in borehole (zero consequence?)
 - Pipe string + waste package string drops in borehole
 - Pipe string drops onto packages
 - Waste packages stuck → Fishing
 - External hazards (seismic, extreme weather)

What is the safest emplacement method, given the possible range of accidents/off-normal events?
Recommend Emplacement Method for Disposal, Apply to DBFT Demonstration

Assumptions

- Prototypical disposal system
 - One borehole
 - 400 packages in stacks of 40 with cement plugs separating
 - Average one package emplaced per day
- Occupational hazards are low and don’t discriminate emplacement options (oilfield experience)
- Worker radiological exposures would be low, and don’t discriminate emplacement options (industry experience with nuclear material handling)
- Functional safety design approach (e.g., ISO 12100, International Organization for Standards)
Cost-Risk Design Study: Event Tree for Drill-String Emplacement

Drill-String Fault Tree Top Events

Drop pipe string during trip out

Package(s) stuck during trip in

Drop string during trip in

Drop string during assembly at the surface

Physical Analysis

Expert Judgment

Outcomes

Normal

C2

B1

D

E1

E2

E3

C1

B1

D. Sassani and E. Hardin, NWTRB 20 Oct 2015; SAND2015-8753 PE
Cost-Risk Design Study:
Event Tree for Wireline Emplacement

Wireline Fault Tree
Top Events

Drop wireline and tool during trip out

Package stuck during trip in

Package drops during trip in

Package drops from the top

→ Physical Analysis

→ Expert Judgment

Outcomes

Normal

C2
B1
D

E1
A1
E3 (or E2)

A3 (or A2)

E4
B2

B2
C1
B1

D. Sassani and E. Hardin, NWTRB 20 Oct 2015; SAND2015-8753 PE
Example Fault Tree: Wireline/Package Drops from the Top

- **Top Event**
- **Logic Structure**
 - AND & OR gates
- **Basic (lower) Events**
 - Types of events (assigned probabilities)
 - Human “diagnosis” error (10^{-2})
 - Human action error (10^{-3})
 - Active equipment (10^{-4})
 - Passive equipment (10^{-5})
- **Example**
 - Top Event: Drop one package from the surface while staging for wireline emplacement

D. Sassani and E. Hardin, NWTRB 20 Oct 2015; SAND2015-8753 PE
Expert Panel Participants

Convened to engage expertise in key subject areas, specifically to review and update preliminary input on engineering concepts, hazard analysis, and cost.

- **External Panelists:**
 - John Finger – Drilling engineering consultant
 - Mark MacGlashan – Wireline consultant
 - Nelson Tusberg – Head of Engineering, Leitner-Poma Ltd.
 - Frank Spane – Geoscientist, PNNL
 - Sven Bader – AREVA engineer
 - Scott Bear – AREVA engineer

- **SNL Panelists:**
 - Doug Blankenship – Manager, Geothermal Dept.
 - Courtney Herrick – WIPP engineer

- **Supporting Resources:**
 - Ernest Hardin – SNL (project lead)
 - Karen Jenni – Insight Decisions, LLC (analyst and facilitator)
 - Andrew Clark – SNL (risk analyst)
 - John Cochran/SNL (emplacement concepts, costing)
 - Jiann Su/SNL (waste packaging concepts)
 - Steve Pye – Drilling engineering consultant
 - Dave Sevougian (hazard analysis)
 - Paul Eslinger/PNNL (hazard analysis)

- **Observers:**
 - Allen Croff/NWTRB Member
Risk Insights from Design Study

- Preliminary Results for DBFT Demonstration Emplacement Mode Selection
- Note: Operational safety analysis for a disposal facility would be conducted under applicable Title 10 regulations and DOE Orders.

<table>
<thead>
<tr>
<th>Outcome Probabilities</th>
<th>Wireline</th>
<th>Drill-String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability of incident-free emplacement of 400 WPs</td>
<td>96.81%</td>
<td>99.22%</td>
</tr>
<tr>
<td>Probability of a radiation release (Outcomes A1–A3, B1 & B2)</td>
<td>1.29E-04</td>
<td>7.04E-03</td>
</tr>
<tr>
<td>Probability of a failure that does not cause radiation release but terminates disposal operations (Outcomes D & E1–E4)</td>
<td>8.45E-03</td>
<td>8.00E-04</td>
</tr>
<tr>
<td>Probability of a failure that leads to extra costs and delays, but does not terminate disposal operations (Outcomes C1 & C2)</td>
<td>2.33E-02</td>
<td>0.00E+00*</td>
</tr>
<tr>
<td>Approximate total cost if successful ($ million)</td>
<td>22.6</td>
<td>40.0</td>
</tr>
<tr>
<td>Expected cost ($ million), weighted normal + off-normal</td>
<td>22.8</td>
<td>42.0</td>
</tr>
</tbody>
</table>

* No delay (and minimal extra cost) because rig is already on site, and some disposal capacity is sacrificed.

D. Sassani and E. Hardin, NWTRB 20 Oct 2015; SAND2015-8753 PE
Recommendations from Comparative Cost-Risk Analysis

- Recommend that the DBFT Demonstrate **Wireline Emplacement**
- Use **Functional Safety** Principles to Control Risk
- Use Risk Insights to Down-Select Features for the DBFT → → →

D. Sassani and E. Hardin, NWTRB 20 Oct 2015; SAND2015-8753 PE
Some Remaining Conceptual Design Questions

- Deep Borehole Field Test
 a) Basement interval completion and emplacement fluid
 b) Factor of safety, and test package metallurgy
 c) Test package terminal sinking velocity
 d) Impact limiter design and performance
 e) Package release mechanism

- Disposal System (in addition to above)
 a) Multi-purpose cask vs. transportation + transfer casks
 b) Emergency equipment repairs in radiation environments
 c) Functional safety control (interlock) system
 d) Engineered measures to prevent packages getting stuck
 e) Waste package drop resistance (dry, surface)
Reference Concept for Disposal Borehole Completion and Sealing

- **Disposal Zone**
 - Cemented guidance casing
 - Emplacement fluid
 - Bridge plugs

- **Sealing/Plugging Zone**
 - Remove guidance tieback (13-3/8”)
 - Remove intermediate casing (18-5/8”)
 - Seal/plug with alternating layers of compacted bentonite clay, cement plugs, and cemented backfill
 - Extend upward across unconformity, into the overburden

- **Overburden Interval**
 - API* type plug, fully cemented

*American Petroleum Institute

Source: Arnold et al. (2011)

Approx. 1.5 to 2 km depth

D. Sassani and E. Hardin, NWTRB 20 Oct 2015; SAND2015-8753 PE
Sealing Materials and Methods
General Outline

- Sealing *
 - Smectites, illites, zeolites
 - Emplacement methods

- Cement *
 - Material properties and longevity
 - Emplacement methods and setting time

- Fused Borehole Plug

- Rock Melting
 - Low permeability plug
 - Controlled annealing of host rock

* Following 35+ years R&D for sealing investigation boreholes and repository shafts

Laboratory immersion 24 hr

(Pusch, R. Borehole sealing with highly compacted Na bentonite. SKB TR-81-09)
Sealing Technology Studies Underway

■ DOE Small Business Innovation Research & Technology Transfer
 – Olympic Research: Thermally formed (thermite) plugs for deep borehole plugging and sealing (2013-2016)
 – Impact Technologies LLC/Massachusetts Institute of Technology/Air Force Research Lab: Deep borehole applications of millimeter wave technology (2014-2016)
 – Cimentum, Inc.: Unique cement for cementing and grouting in deep boreholes for waste disposal (2015-2016)

■ Sandia Partner Labs and Subcontracts
 – University of Sheffield, UK: Deep borehole field test and borehole seal design and performance criteria (Sept. 2015 – Sept. 2016)
 – Los Alamos National Laboratory: High-temperature and -pressure investigations of smectite stability
 – Participation in DOE’s Subsurface Technology and Engineering Research, Development, and Demonstration (SubTER) program

https://www.fbo.gov/?s=opportunity&mode=form&id=a530c281c15d1c191336a681e69eefe5&tab=core&cvview=0

