Performance Assessment Modeling of a Generic Salt Disposal System for High-Level Radioactive Waste

S. David Sevougian
Principal Member of Technical Staff
Sandia National Laboratories

U.S. Nuclear Waste Technical Review Board Meeting
Albuquerque, NM
March 19, 2014
Participants in Performance Assessment (PA) and Coupled Process Modeling

- **DOE**
 - Prasad Nair, Mark Tynan

- **SNL**
 - Geoff Freeze, Payton Gardner, Glenn Hammond, Dave Sevougian, Bob MacKinnon, Frank Hansen, Christi Leigh, Lupe Arguello, Paul Mariner

- **OFM Research**
 - Peter Lichtner

- **LANL**
 - Scott Painter, Shaoping Chu, Phil Stauffer, Dylan Harp

- **LBNL**
 - H.H. Liu, Jens Birkholzer, Marco Bianchi, Jonny Rutqvist
Outline of Presentation

- Objectives
- PA methodology
 - FEPs analysis, reference case
- PA model/code development
 - High-performance computing (HPC) environment
- Demonstration simulation
 - Generic salt repository example (for SNF)
- Source-term process model integration with PA system model
- Summary and future work
Objectives

- Develop a PA capability that readily evolves throughout the program lifecycle (site selection and characterization, construction, licensing, etc.) to
 1) Evaluate potential SNF/HLW disposal sites in salt host rock (and other generic media)
 2) Help prioritize generic RD&D activities (later, site-specific)
 3) Support safety case development during all phases
PA Model Development Methodology

- **Direct representation of important coupled multi-physics processes:**
 - Minimize conservative assumptions, simplifications, and process abstractions
 - Enhances transparency and confidence
 - Allows a realistic spatial-temporal representation of geometry, features, events, and processes (FEPs), and uncertainty (i.e., 3D probabilistic simulation)
 - Spatial variability in degradation processes and T-H-C-M behavior
 - Uncertainty quantification (UQ), both aleatory and epistemic, in parameters/processes

- **High-performance computing (HPC) architecture**
 - Facilitates reasonable probabilistic PA-model runtimes for science-based, 3D multi-physics

Fig. 1: J.C. Helton et al. / Reliability Engineering and System Safety 122 (2014) 267–271.
Multi-Physics Fidelity in PA versus Supporting Process-Level Models

- We use process-level understanding of salt repository evolution to inform the use of high-fidelity model components in PA code.

- Process-level detail necessary in a PA is a function of time-scales and importance of underlying processes:
 - e.g., salt creep closure and backfill reconsolidation (THM processes) are short time-scale processes that may need to be represented in PA.

- Multi-physics-capable PA model will help determine the processes that are important to postclosure repository performance.
Reference Case is a surrogate for site- and design-specific information

- Documents information and assumptions needed for *generic* disposal system models
- Helps ensure consistency across analyses (e.g., PA, process modeling, UA/SA)

Major steps in PA Methodology

1. FEPs Identification for a Generic Salt Repository
2. Generic Salt Repository Reference Case
 - Inventory
 - Geologic Disposal System
 - Concept of Operations
 - Biosphere
 - Regulations
 - Engineered Barrier System (EBS)
 - Natural Barrier System (NBS)
3. FEPs Screening & PA Model Guidelines
4. Performance Assessment Multi-Physics Model/Code Construction
5. Disposal System Evaluation
 - Preclosure Safety Analysis
 - Postclosure Performance Assessment
Salt Reference Case Details
– Natural Barrier System (NBS)

Salt host rock:
- Use information and characteristics representative of five major bedded salt basins in the U.S.
 - Stratigraphy: depth, thickness, lateral extent
 - Formation properties: hydraulic gradient, porosity, permeability, diffusivity, sorption
 - Fluid (brine) chemistry

Disturbed rock zone (DRZ):
- Typical properties from international studies and from WIPP

Interbeds:
- Types (e.g., dolomite, anhydrite) and frequency
- Dimensions, locations (near DRZ), and properties

Representative aquifer:
- A single-porosity, saturated, sedimentary formation
- Depth above repository, thickness, physical and chemical characteristics
Disposal Concept and Layout

- Repository depth = 680 m

- Waste inventory
 - ~70,000 MTHM UNF
 - ~13,400 WPs
 - Burn-up = 60 GWd/MT

- Drift spacing and WP loading based on 200°C thermal limit for salt
 - 12 PWR assemblies per WP
 - 7.5 kW/WP

- Geometry — layout of drifts and shafts
 - 84 pairs of 800-m drifts
 - Drift spacing = 20 m
 - 80 5-m-long WPs per drift with 10 m spacing
 - Crushed salt backfill in drifts
 - Sealed shafts (similar to WIPP)
PA Methodology – Features, Events, Processes (FEPs) Analysis

Generic Salt Repository Reference Case

- Inventory
- Geologic Disposal System
- Concept of Operations
- Biosphere
- Regulations

FEPs Identification for a Generic Salt Repository

FEPs Screening & PA Model Guidelines

Performance Assessment Multi-Physics Model/Code Construction

Disposal System Evaluation

- Preclosure Safety Analysis
- Postclosure Performance Assessment
Features, Events, Processes (FEPs) Analysis

- **FEP analysis supports safety assessments and safety cases**
 - Development of system models
 - Prioritization of research
 - Licensing/safety case (completeness)
 - Identification of risks and hazards

- **FEP analysis is used in all advanced repository programs**
 - U.S. DOE-NE Used Fuel Disposition
 - U.S. DOE-EM Waste Isolation Pilot Plant (WIPP)
 - U.S. OCRWM Yucca Mountain Project
 - German VSG (Gorleben)
 - Nuclear Energy Agency (NEA) International FEP Database
 - Sweden, Switzerland, Belgium, U.K., Canada

Features:
- Host Rock (Intact Halite)
- Interbed
- Disturbed Rock Zone (DRZ)
- Backfilled Drift Excavation
- Aquifer
- Biosphere (Aquifer, Receptor Well)
 - Dilution
 - Water Consumption
 - Dose Conversion Factors

Processes:
- Far Field (NBS – DRZ) (Host Rock, Interbeds)
 - Advection
 - Diffusion
 - Sorption
 - RN Decay and Ingrowth

- Near Field (EBS + DRZ) (Backfill, DRZ, Shaft Seals)
 - Salt Creep Closure
 - DRZ Evolution
 - Shaft Seal Evolution
 - Chemical Interactions
 - Thermal Effects

- Source Term (Waste Form, Waste Package)
 - RN Inventory
 - WF Degradation
 - WP Degradation
 - Gas Generation
FEPs Analysis/Screening to Inform PA Model Guidelines

- **FEPs identification** – comprehensive list of FEPs that capture the entire range of phenomena potentially relevant to long-term performance of the repository

- **FEPs screening** – subset of important FEPs that individually, or in combination with other FEPs, contribute to long-term performance
 - FEPs may be *excluded* based on low probability, low consequence, or regulation

- **PA model requirements** – Review/analysis of included FEPs will provide guidance on how to include them in the PA component models:
 - Fidelity & dimensionality of T-H-M-C processes in PA

Screening Recommendation for a Generic Salt Site

<table>
<thead>
<tr>
<th>UFD FEP Number</th>
<th>Name/Description</th>
<th>Associated Processes</th>
<th>Screening Recommendation for a Generic Salt Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.09.11</td>
<td>Electrochemical Effects in EBS</td>
<td>- Enhanced metal corrosion</td>
<td>Likely Excluded, but reevaluate once a more detailed design is available.</td>
</tr>
</tbody>
</table>
High-performance computing (HPC) environment facilitates:

- Three-dimensional (3D) multi-physics in PA
- Multiple realizations over uncertain inputs
- Future advances in computational methods and hardware

Code capabilities:

- Open source development and distribution
 - Transparency
 - Shareable among multi-lab subject matter experts and stakeholders
- Flexible and extensible; scalable
 - Modular implementation of simple and/or advanced PA component models and FEPs
- Leverage existing computational capabilities
 - Meshing, visualization, HPC solvers, etc.
- Appropriate Configuration Management (CM) and Quality Assurance (QA)
Current Integrated PA Code Capabilities

Input Parameter Distributions
- Stochastic Simulation
 - "DAKOTA"
 - Uncertainty quantification, LHS stratified sampling, sensitivity analysis

Domain Simulation
- PFLOTRAN
 - Integrate multi-physics simulations for EBS & NBS

Source Term and EBS Evolution Model
- Inventory
- High resolution of spatial and temporal representation of processes and couplings:
 - WF Degradation
 - WP Degradation
 - Radionuclide Mobilization
 - Solubility Limits
 - Thermal Effects
 - Gas Generation

Flow & Transport Model
- Spatial and temporal representation of THC processes:
 - Advection
 - Diffusion/Dispersion
 - Sorption
 - Colloids
 - Decay and ingrowth
 - Homogeneous/heterogeneous reactions

Biosphere Model
- Exposure pathways
- Uptake/transfer factors
- Radionuclide concentrations in aquifer

Computational Support
- Mesh Generation - Cubit
- Visualization/Plotting – ParaView, VisIt
- Parameter Database

Results
- Python scripts to post-process model output for visualization and analysis

Design Analysis Kit for Optimization and Terascale Applications
PFLOTRAN Capabilities

- **Multi-physics**
 - Multi-phase flow and heat
 - Multi-component reactive transport
 - Biogeochemistry processes

- **High-Performance Computing**
 - Mechanistic process models
 - Highly-refined 3D discretizations
 - Massive probabilistic runs

- **Open Source Collaboration**
 - Leverages diverse scientific community

- **Modern Fortran (2003/2008)**
 - Domain scientist friendly
 - Modular framework for adding new capability
PFLOTRAN Process Modeling

- **Flow**
 - Multiphase gas-liquid
 - Constitutive models and equations of state

- **Reactive Transport**
 - Advection, dispersion, diffusion
 - Multiple interacting continua

- **Energy**
 - Thermal Conduction and Convection

- **Geochemical Reaction**
 - Aqueous speciation (with activity models)
 - Mineral precipitation-dissolution
 - Surface complexation, ion exchange, isotherm-based sorption
 - Radioactive decay with daughter products

Hammond and Lichtner, WRR, 2010
PA Methodology
- Disposal System Evaluation

Generic Salt Repository Reference Case
- Inventory
- Geologic Disposal System
- Concept of Operations
- Biosphere
- Regulations

FEPs Identification for a Generic Salt Repository
- Engineered Barrier System (EBS)
- Natural Barrier System (NBS)

FEPs Screening & PA Model Guidelines

Performance Assessment Multi-Physics Model/Code Construction

Disposal System Evaluation
- Preclosure Safety Analysis
- Postclosure Performance Assessment

March 19, 2014
Generic Salt Repository
PA Demonstration Case

- Undisturbed scenario
- Uncertainty quantification (DAKOTA)
 - Latin Hypercube sampling of input parameter distributions
 - Sensitivity analysis
- Coupled domain processes (PFLOTRAN)
 - NBS: 3D flow and radionuclide transport
 - Diffusion through DRZ and bedded salt
 - Advection through aquifer
 - EBS: realistic source term
 - 5 radionuclides:
 - 129I, 241Am, 237Np, 233U, 229Th
 - Waste form (SNF) degradation rate controlled by kinetic rate of reaction
 - Solubility limits
 - Dissolved radionuclides that reach solubility will precipitate
Simulation domain
- 3D vertical slice
- 20-m wide pillar to pillar
- 1 drift with 80 waste packages and backfill

\[X = 5009 \text{ m} \quad NX = 242 \]
\[Y = 20 \text{ m} \quad NY = 5 \]
\[Z = 245 \text{ m} \quad NZ = 38 \]
\[\text{Cells} = 45,980 \]

Drift detail
8 of 80 waste packages shown
DAKOTA / PFLOTRAN simulations:
- Deterministic simulation with mean values
- 100-realization probabilistic simulation with 9 sampled parameters
- Run on SNL Red Sky HPC cluster
 - Nested parallelism
 - Many concurrent realizations
 - Each realization distributed across many processors

- Total nodes: 2,816 nodes / 22,528 cores
- 505 TeraFlops peak
237Np dissolved concentration at 1000 years, showing drift detail
Generic Salt Repository PA Demonstration – Deterministic Simulation Results

- **237Np dissolved concentration**
 - Repository domain ~ 1000 m

- **233U precipitated concentration**
 - Repository domain ~ 1000 m

![Pseudocolor plot for 237Np dissolved concentration](image1)

Time=0

![Pseudocolor plot for 233U precipitated concentration](image2)

Time=0

March 19, 2014
Multi-Realization Analysis

- ^{237}Np dissolved concentration vs. time in anhydrite interbed at $x = 400$ m (DAKOTA probabilistic output of 100 realizations)

- DAKOTA rank correlation analysis: ^{237}Np output concentration at 100K years versus input parameter uncertainty

- Scatterplot: ^{237}Np output concentration at 100K years versus DRZ porosity
Example of Flexible PA Model Architecture

- Coupling with Process-Level Mixed Potential Model (MPM) for SNF Degradation:

System Level Model (Performance Assessment)

Solution Chemistry

Fuel matrix degradation rate + IRF

SNF Waste Form Degradation Model

- Radiolysis Module
- Mixed Potential Module
- Instant Release Fraction Module
A PA modeling/analysis capability has been developed to:

- Evaluate generic and/or specific disposal sites with a high-fidelity representation of coupled processes in 3D:
 - Based on HPC architecture and software, and adaptable to future advances
 - Use extensive current knowledge base in salt to inform model development
 - Includes appropriate representation of uncertainty and heterogeneity
- Support prioritization of UFD RD&D activities
- Enhance confidence and transparency in the eventual safety case

Demonstration of new capability by application to a generic salt repository reference case

FY14 ongoing work includes

- Further code refinement, as necessary
- Further reference case development, simulations, and testing for salt, as well as granite and argillite
- Integration with SNF degradation process-level models
Thank you for your attention!

Questions?
Backup Slides
Detailed Elements of the Safety Case

1. Introduction, Purpose, and Context

2. Safety Strategy
 2.1 Management strategy
 - Organizational/mgmt. structure
 - Safety culture & QA
 - Planning and Work Control
 - Knowledge mgmt
 - Oversight groups
 2.2 Siting & Design strategy
 - NPP/PA
 - Site selection basis
 - Design requirements
 - Disposal concepts
 2.3 Assessment strategy
 - Regulations (10 CFR 60)
 - Performance goals/safety criteria
 - Safety functions/multiple barriers
 - Uncertainty characterization
 - RD&D prioritization guidance

3. Assessment Basis
 3.1 Design, Construction, & Operations
 - Repository design & layout
 - Waste package (WP) design
 - Construction requirements & schedule
 - Operations & surface facility
 - Waste acceptance criteria
 3.2 Waste & Engineered Barriers Technical Basis
 - Inventory characterization
 - WP technical basis
 - Buffer/backfill technical basis
 - Shafts/seals technical basis
 - International collaboration & peer review
 3.3 Geosphere/ Natural Barriers Technical Basis
 - Site characterization
 - Host rock/DRZ technical basis
 - Aquifer/other geologic units technical basis
 - International collaboration & peer review
 3.4 Biosphere & Surface Environment Technical Basis
 - Biosphere & surface environment:
 - Surface environment
 - Flora & fauna
 - Human behavior
 - International collaboration & peer review

4. Disposal System Safety Evaluation
 4.1 Preclosure Safety Analysis
 - Surface facilities, handling & acceptance
 - Underground transfer
 - Emplacement operations
 - Design basis event construction
 - Preclosure model/software development
 4.2 Postclosure Safety Assessment
 - FEV analysis/screening
 - Scenario construction/screening
 - TSPA model/software development
 - Performance assessment analyses
 - Barrier/safety function analyses and subsystem analyses
 - Uncertainty/sensitivity analyses
 4.3 Confidence Enhancement
 - RD&D prioritization
 - Natural/anthropogenic analogues
 - URL & large-scale validation
 - Monitoring and performance confirmation
 - International collaboration & peer review

5. Synthesis & Conclusions
 - Key findings and statement(s) of confidence
 - Discussion/disposition of remaining uncertainties
 - Path forward
“Performance assessment is arguably the most important part of the safety case...” (NWTRB 2011)

Role of PA in the Safety Case

Iterative PA Methodology

Safety Case Structure

Executive Summary

Section 1. Introduction, Purpose, and Context

Section 2. Safety Strategy

2.1 Management strategy

2.2 Siting & Design strategy

2.3 Assessment strategy

Section 3. Assessment Basis

3.1 Design, Construction, & Operations

3.2 Waste & Engineered Barriers Technical Basis

3.3 Geosphere/Natural Barriers Technical Basis

3.4 Biosphere & Surface Environment Technical Basis

4. Disposal System Safety Evaluation

4.1 Preclosure Safety Analysis

4.2 Postclosure Safety Assessment

4.3 Confidence Enhancement

5. Synthesis & Conclusions (no external docs)

- Key findings and statement(s) of confidence
- Discussion/disposition of remaining uncertainties
- Path forward

Define Performance Goals

Characterize System

(Develop and screen FEPs, construct scenarios, estimate scenario probabilities)

Identify Scenarios for Analysis

Build Models and Abstractions

(Conceptual models, mathematical models, computational models)

Quantify Uncertainty

Construct Integrated PA Model and Perform Calculations

Uncertainty and Sensitivity Analyses

Directed Science and Testing Program

Evaluate Performance

Determine Compliance

Prioritize Research
Role of RD&D in Evolution of the Safety Case

- Iteration of Safety Assessment and Site Characterization/Design:
 - Safety case provides a structured framework to assist in prioritizing the technical work in the next phase, to reduce uncertainties and enhance confidence.
 - Safety understanding and the associated technical bases evolve with phases of repository development, via RD&D.
Features, Events, Processes (FEPs) Screening Methodology

1. Potentially Relevant Existing FEPs (e.g., NEA)
2. Site- and Design-Specific Information (e.g., reference case)

FEPs Potentially Relevant to Specific Repository System

Screen FEPs Based on Technical and Regulatory Criteria

- Low Probability (e.g., FEP has an annual probability of occurrence of less than 10^{-8})
- Low Consequence (e.g., exclusion of FEP would not significantly change radiological exposure or radionuclide release)
- By Regulation (e.g., FEP is inconsistent with regulatory specifications)

Screened-in (Included) FEPs to be Implemented in Models for Undisturbed (Nominal) and/or Disturbed (Disruptive) scenarios
FEPs Matrix

Coupled THCMBR Processes and Events

<table>
<thead>
<tr>
<th>Characteristics, Processes, and Events</th>
<th>Processes</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical and Chemical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal-Mechanical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal-Hydrological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical and Thermal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal-Chemical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological and Thermal-Transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal-Biological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-Term Geologic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Activities (Long Timescale)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear Criticality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early Failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seismic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Igneous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Activities (Short Timescale)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Waste and Engineered Features

- Waste Form and Cladding
- Waste Package and Internals
- Buffer/Backfill
- Emplacement Tunnels/Drifts and Mine Workings
- Seals/Plugs

Geosphere Features

- Host Rock (Repository Horizon)
- Other Geologic Units (non-Repository Horizon)

Surface Features

- Biosphere

System Features

- Repository System
Major Projects Leveraging PFLOTRAN

- **Nuclear Waste Disposal**
 - Waste Isolation Pilot Plant (WIPP)
 - SKB Forsmark Spent Fuel Nuclear Waste Repository

- **Climate (CLM-PFLOTRAN)**
 - Next Generation Ecosystem Experiments (NGEE) Arctic
 - DOE Earth System Modeling (ESM) Program

- **Fate and Transport of Contaminants**
 - PNNL SBR Science Focus Area (Hanford 300 Area)
 - ASCEM (i.e. PFLOTRAN geochemistry)

- **CO2 Sequestration**
 - DOE Fossil Energy: Optimal Model Complexity in Geological Carbon Sequestration (U. Wyoming)
 - DOE Geothermal Technologies: Interactions between Supercritical CO2, Fluid and Rock in EGS Reservoirs
PFLOTRAN

PFLOTRAN is an open source, state-of-the-art massively parallel subsurface flow and reactive transport code. The code is developed under a GNU LGPL license allowing for third parties to interface proprietary software with the code, however any modifications to the code itself must be documented and remain open source. PFLOTRAN is written in object oriented, free formatted Fortran 2003. The choice of Fortran over C/C++ was based primarily on the need to enlist and preserve tight collaboration with experienced domain scientists, without which PFLOTRAN's sophisticated process models would not exist.

PFLOTRAN employs parallelization through domain decomposition using the MPI-based PETSc framework with pflotran-dev tracking the developer version of PETSc (i.e. petsc-dev) available through Bitbucket.

PFLOTRAN Performance

Installation Instructions

Windows

Linux
PFLOTRAN Support Infrastructure

- **Mercurial**: distributed source control management tool
- **Bitbucket**: online PFLOTRAN repository
 - hg clone https://bitbucket.org/pflotran/pflotran-dev
 - Source tree
 - Commit logs
 - Wiki
 - Installation Instructions
 - Quick Guide
 - FAQ (entries motivated by questions on mailing list)
- Change Requests
- Issue Tracker

- **Google Groups**: pflotran-users and pflotran-dev mailing lists
- **Buildbot**: automated building and testing
- **Google Analytics**: tracks behavior on Bitbucket
DAKOTA Modeling Capabilities

- Manages uncertainty quantification (UQ), sensitivity analyses (SA), optimization, and calibration
 - Generic interface to simulations
 - Extensive library of time-tested and advanced algorithms
 - Mixed deterministic / probabilistic analysis
 - Supports scalable parallel computations on clusters
 - Object-oriented code; modern software quality practices

![DAKOTA diagram]

http://dakota.sandia.gov/
Select References

