Research and Development Activities Related to the Direct Disposal of Dual Purpose Canisters

William Boyle
Director
Office of Used Nuclear Fuel Disposition R&D (NE-53)
Office of Nuclear Energy
U.S. Department of Energy

U.S. Nuclear Waste Technical Review Board
Spring Board Meeting
April 16, 2013
This is a technical presentation that does not take into account the contractual limitations under the Standard Contract. Under the provisions of the Standard Contract, DOE does not consider spent fuel in canisters to be an acceptable waste form, absent a mutually agreed to contract modification. To ensure the ability to transfer the spent fuel to the government under the Standard Contract, the individual spent fuel assemblies must be retrievable for packaging into a DOE-supplied transportation cask.
Outline

Nuclear Energy

- What is a Dual Purpose Canister?
- Dispose or Repackage?
- Ongoing R&D
Examples of Dual-Purpose Canisters

- **Magnastor® Dual-Purpose Canister (DPC) system**
- Capacity up to 37 pressurized water reactor (PWR) assemblies, 87 boiling water reactor (BWR) assemblies
- Thermal limits: 35.5 kW storage, 24 kW transport

Pictures and data from NAC International website 22Feb2013
Examples of Dual Purpose Canisters (cont.)

- NUHOMS® canisters are the only ones stored horizontally.
- NUHOMS® canisters in use with multiple loading configurations (24 & 32 PWR, 56 & 61 BWR)

- Over 50% of U.S. used nuclear fuel (UNF) is stored in Transnuclear (TN) designed systems
 - >650 TN casks
 - >23,000 assemblies
 - 31 U.S. sites at the end of 2010
Examples of Dual Purpose Canisters (cont.)

- Holtec HI-STORM® 100U canister overpack system for below-grade storage (32 PWR/68 BWR)
- Based on HI-STORM 100 shielded overpack with bolted closure, and welded stainless “multi-purpose” canister for SNF (24-32 PWR/68 BWR)
- Uses HI-TRAC® (125 ton max.) transfer cask
- Mitigates aircraft crash hazard

Pictures from EPRI Spent Fuel Storage Handbook
Evolution of Dry Shielded Canisters for Pressurized Water Reactors (PWRs)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>NUHOMS® Canister</th>
<th>Assemblies Capacity</th>
<th>Loaded Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>7 P</td>
<td>7</td>
<td>10 tons</td>
</tr>
<tr>
<td>2000</td>
<td>24 PTH</td>
<td>24</td>
<td>40 tons</td>
</tr>
<tr>
<td>2003</td>
<td>32 PTH</td>
<td>32</td>
<td>55 Tons</td>
</tr>
<tr>
<td>2012</td>
<td>37 PTH</td>
<td>37</td>
<td>55 Tons</td>
</tr>
</tbody>
</table>

- **NUHOMS® 24PTH**
- **NUHOMS® 32PTH**
- **NUHOMS® 37PTH**
Dispose or Repackage?
Pros and Cons of Direct Disposal

Pros

- Minimize future handling of used fuel
 - Occupational dose
 - Cost
 - Potential for fuel damage
- Operational efficiency at reactor sites
- Potential transportation cost savings
- Potential disposal cost savings
 - Fewer waste packages (but likely greater spacing in the underground)
 - Lower repository operating costs

Cons

- Will reduce flexibility in repository design options
 - Thermal load management
 - Operational constraints associated with very large and heavy packages
 - Mining considerations
- May reduce options for repository site selection
- May complicate evaluations of long-term performance
 - Thermal-Hydrologic-Chemical-Mechanical considerations
 - Criticality control
Fully loaded DPCs with disposal overpacks (waste packages) and transfer casks (shielding) will be heavy
- Fully loaded DPC canister ~50 metric tons (MT)
- DPC + waste package + transfer cask ≈ 150 MT
- Heaviest waste package for YM (Naval SNF) was ~74 MT

Ramp versus shaft access?
- Cranes of sufficient capacity exist, shaft hoist designs are being considered (e.g., the German program is evaluating options for DPC payloads up to 175 MT)
- Ramp concepts up to ~15% grade for rubber tires, 2.5% grade for rail
 - Andra has considered a funicular rail design up to 26.8% grade (15 degree incline)

Ground support for large openings
Backfilling and sealing large openings
Long-Term Performance Challenges

- **Thermal Load Management**
 - DPCs are now loaded at about 20 kW
 - Canister design storage limits are typically 24 kW, maximum currently available is rated to 40.8 kW for storage
 - Hottest waste packages considered for Yucca Mountain emplacement were 18 kW
 - Other repository design concepts call for much cooler waste packages (e.g., SKB calls for initial load per package ≤ 1.7 kW)

- **Other performance considerations**
 - Engineered barrier performance at elevated temperatures (e.g., clay-based backfill_buffer performance)
 - Criticality control

![Estimated Cooling Time for PWR fuel to Reach Specified Thermal Power, as a Function of Canister Size and Burnup](chart.png)
Ongoing R&D to Support Direct Disposal of Dual Purpose Canisters

- Open (i.e., unbackfilled) emplacement modes allowing ventilation
 - Thermal analysis completed for clay/shale and granitic rocks
- Thermal-mechanical analysis for large packages in salt
- Alternative media (e.g., unsaturated alluvium)
Conclusions

- Direct disposal of dual purpose canisters may offer significant benefits for cost and operational efficiency
- Direct disposal of dual purpose canisters may also pose engineering challenges, reduce flexibility on repository siting and design, and complicate evaluations of long-term disposal repository performance
- Ongoing R&D will help inform decision making