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Presentation Outline 

 Need for discrete fracture network (DFN) models 
 International experience with DFN models of flow and transport 

in fractured granite 
 Limitations of existing tools  
 Development of new DFN flow and transport capabilities  

– Choice of solution method for flow  

– Meshing issues  

– Choice of solution method for transport  

 Example simulations 
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Flow and Transport in 
Fractured Rock 

 For repositories sited in granitic rock, interconnected networks 
of fractures provide the primary pathways for radionuclide 
migration to the accessible environment 

 Quantitative assessment of flow and transport in fractured rock 
is among the most challenging topics in contemporary 
groundwater science (e.g. Neuman, 2005)  

 Experience suggests that the traditional approach of 
representing the fractured rock mass as an equivalent 
continuum misses key phenomena  
– High-degree of channeling  

– Scale dependence  

– Complex directional dependence  

– Highly skewed breakthrough curves 
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Discrete Fracture Network 
(DFN) Approach 

 Explicitly represents the 
geometry and properties of 
discrete features 

 Alternative to continuum  
representation 

 Fractures are typically 
generated stochastically  

 Computationally  
demanding approach made 
feasible by modern 
computing equipment 

Modified from  
Selroos et al. 2002 



International Experience:  
Sweden and Finland 

 Sweden’s SR-Site safety assessment of the 
proposed Forsmark repository relied on DFN 
modeling of flow and radionuclide transport 

 Clear demonstration that a high-quality safety 
case for a complex site can be constructed 
primarily on DFN representations  

 Similar approach used in Finland 
 Transport results will be  

difficult to reproduce  
with continuum  
approaches 
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Representative Transport  
Results from Sweden’s SR-Site  

7 
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Q1 
Q3 

SKB 2010 



Development of DFN Capability 

 Capability is needed to  
– Assess performance of fractured granite sites 
– Address unresolved scientific issues associated with transport in sparsely 

fractured rock  
– Understand flow and transport in excavation damage zone near clay repository 

tunnels  
 Existing research and commercial codes are not adequate  

– Local mass balance issues associated with conventional finite element method  
– Not designed for modern parallel computing hardware  
– Limited capability for radionuclide transport  

 Currently developing prototype capability for testing and refining 
algorithms  

– Leveraging existing capability developed internationally and in other DOE 
programs  

 Final algorithms will be implemented in a parallel framework  
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Prototype Development 

 Strategy  
– Finite volume method for flow (Voronoi cells) 
– Advective particle tracking to establish transport pathways  
– Post-process particle tracking results to account for matrix diffusion/sorption    

 Implementation  
– New code to generate DFN 
– Los Alamos Grid Toolkit (LaGrit) for meshing  
– FEHM  (Zyvoloski, 2007) for flow  
– Walkabout (Painter 2011) for advective  

particle tracking on unstructured grids  
– MARFA (Painter and Mancillas, 2009) for transport  
– Connected through Python scripts  
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Challenges in Grid Generation  

 Must triangulate each fracture as a 2D object while ensuring that grids match at 
fracture intersections  

 Grid generation for DFNs is an active area of research  
 For arbitrary network geometries, high quality grid of reasonable size cannot be 

guaranteed because of problematic configurations 
– Fracture intersections with small extent  
– Triple intersections  
– Closely spaced fractures   

 Previous work sought to modify generated  
DFN to remove troublesome features  

 Two new approaches 
1 Constrain DFN generation  

to avoid features of size less than a defined  
length scale h 

2 Modify flow solution to allow nonmatching grids   
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Constructing DFNs to O(h) 

 User specifies minimum length scale h 
 When generating DFNs, reject fractures that create a feature less than 

(lt.) h 
 Examples of reasons for rejecting a fracture  

– Intersection between fracture is lt. h 
– Distance between nonintersecting fractures is lt. h 
– Intersections of intersections  
– Distance from intersection to fracture edge is lt. h 
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Meshing 

 Once features of length h are 
removed, the DFN is meshed 
in LaGrit 

 Nodes on the line of 
intersection are common to 
both fractures 

 Lines of intersection are 
preserved using a 
conforming Delaunay 
triangulation 

 At intersections, control 
volumes lie in two fracture 
planes 
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Generating Matching Grids at 
Intersections 

 Nodes placed on each fracture independent of other fractures  
 Nodes within distance h of an intersection are removed 
 New nodes placed on each intersection  
 Mesh created by Delaunay triangulation on each fracture 
 Merge meshes and eliminate duplicate nodes at intersections  
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Non-uniform Grid Resolution 
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Particle Tracking on Unstructured 
Control Volume Grids 

 Streamline tracing in the groundwater velocity field is needed to establish 
advective flowpaths (transport pathways)  

 Velocity field is not available for unstructured control volume grids – only have 
normal components of velocity on each cell edge  

 Leveraging new method (Painter et al. 2011) for reconstructing the velocity field 
developed for DOE Office of Environmental Management (EM), Underground 
Test Area (UGTA) subproject  

– Solves constrained linear least square problem on  
each control volume cell to approximate nodal velocity  

– Interpolates nodal velocities to approximate velocity field  
– Implemented in Walkabout code 

 Figure shows velocity streamlines calculated from 
control volume flow solution on fracture plane  
compared with analytical solution  
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Example Pressure Fields 
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Discrete Fracture Networks 
Embedded in Tetrahedral Mesh 
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Path Forward  

 Implement new particle tracking method in 2-D (current version of Walkabout is 
3-D)  

 Continue developing capability to mesh in space between fractures (needed for 
some applications)  

 Use new prototype capability to test and refine algorithms  
– Detailed specifications for implementation in massively parallel code  

 Use prototype capability to begin addressing unresolved scientific issues 
related to assessment of geosphere performance  

– Range of applicability for continuum versus discrete models  
– Strategies for parameterizing discrete models  
– Role of small versus large features in controlling geosphere performance  

 Implement high-performance computing version  
– Currently evaluating Amanzi code developed in EM’s Advanced Scientific Computing for 

Environmental Management (ASCEM) program  
 Continue addressing unresolved scientific issues related to assessment of 

geosphere performance  
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