NEA and MIT Systems Code Benchmarks

Brent Dixon

Extract of slides given at
Systems Analysis Working Group Meeting
July 8, 2009
Background

- Systems codes are complex and difficult to verify
- Benchmarking provides a means for code validation
- VISION has now been benchmarked in two separate studies
 - NEA benchmark
 - 3 scenarios in a progressive series
 - 5 codes (COSI, FAMILY, DESAE, EVOLCODE, VISION)
 - MIT benchmark
 - 5 scenarios varying in growth rate and fuel cycle
 - 4 codes (CAFCA, COSI, DANESS, VISION)
NEA Benchmark Series

- Three benchmarks based on a constant level of nuclear energy
 - Open cycle
 - Monorecycling of the Plutonium in the PWRs.
 - Monorecycling of the Plutonium in the PWRs and then deployment of the Gen IV fast reactors recycling Plutonium and minor actinides.

- Benchmark specification includes numerous parameters defining the scenarios
 - Reactor properties
 - Core properties
 - Fuel properties and isotopic contents
 - Reprocessing schedules, capacities, priorities, efficiencies
 - Electricity output by reactor type by year
NEA Benchmark Series

- Specified outputs in a spreadsheet format, to include:
 - Natural Uranium consumption,
 - SWU needs,
 - Fuel fabrication flows
 - Interim storage inventories
 - spent fuel
 - depleted Uranium
 - Plutonium
 - Etc.
 - Processed spent fuel
 - Pu and MA mass flows
 - Plutonium and minor actinides losses from reprocessing
NEA Benchmark #1 – Open Cycle

- A constant energy level with a single reactor type
 - Confirms initial conditions modeled consistently
 - Confirms fuel cycle front-end flows
 - Simple case easily verified

Scenario 1

![Graph showing Scenario 1 with PWR UOX power over time.](image-url)
NEA Benchmark #2 – Adds MOX

- Designed for equilibrium behavior
 - Confirms separations initialization
 - Confirms fleet fuel mix transition
 - Rate of introduction
 - Level sustained
 - Storage inventory decay impacts results
NEA Benchmark #3 – Adds FR Transition

- **Much more complex**
 - Adds two more transitions
 - *Ending MOX*
 - *Starting FRs (convertors)*
 - Augments separations strategy
 - *UOX, MOX, FR core, FR blanket all specified separately*
 - Adds reactor retirement

- **Tests TRU mass management**
 - TRU for FR startup schedule barely sufficient
Discussion

- Benchmarking is hard to do
 - Even a simple case requires specifying pages of input
 - Differences in interpretation require iteration of the specification

- In general, all the codes demonstrated similar behavior
 - Especially true for general trends, which is purpose of these codes
 - Specific differences usually traceable back to how each code modeled features (more stages/details gives more time step delays, etc.)

- Benchmarks generally did not test advanced features of codes
 - Many intelligent capabilities were overridden (code dumbed down) to get best match with other cases
 - Many advanced extensions appear only in a single code