MIT Future of Nuclear Fuel Cycle Study - principal issues

Ernest J. Moniz
Cecil and Ida Green Professor of Physics and Engineering Systems
Director, MIT Energy Initiative
History

- In 2003 MIT issued the study: *The Future of Nuclear Power*
  - Proposed first-mover incentives for new nuclear power plants, helping spur 2005 legislation
  - Generally well received (eventually!)
- **Major changes since 2003**
  - Update Recently Published on the way to new study
- **MIT interdisciplinary study on The Future of the Nuclear Fuel Cycle**
- **Status Report**
  - What has changed
  - Report Objectives
  - Critical questions that must be addressed
Study Sponsors

- Electric Power Research Institute
- Idaho National Laboratory
- AREVA
- General Electric
- Westinghouse
- NAC
Update of MIT 2003
Future of Nuclear Power Study

- Compared to 2003, motivation to make more use of nuclear power is greater
- Public acceptance of nuclear power is greater
- Performance of nuclear plants has been excellent
- Nuclear plants are still more expensive (cost/kwh) than coal or natural gas but removal of risk premium and/or CO2 can make nuclear power competitive
- Government first mover incentives have not been effective to date to make firm nuclear power commitments
- Clear need for a robust long term waste management policy
  - Interim storage
  - Fuel cycle alternatives including reactor technologies
  - Disposal options
Bottom Line Conclusions

- **After 6 years:**
  - No new plants under construction in US
  - Insufficient progress is being made on waste management (some will argue negative progress)
  - Government assistance program not effective and needs to be improved

- **If this is not done:**
  - Nuclear power will diminish as a timely and practical option at a scale where it matters for climate change mitigation
Two Overarching Questions:

1. What are the long-term nuclear fuel cycle choices that have desirable features?

2. What are the implications for near-term policy choices?
Ground Rules and Assumptions

Range of Cases Analyzed to Understand Sensitivity of Results to Input Assumptions

- Alternative nuclear growth rates considered
- Several fuel cycles analyzed/baseline cases and alternatives
  - Once through
  - Recycle for fissile fuel recovery
  - Recycle for waste management
  - Evaluate in “modern” context of U resources and LWR staying power
- Primary emphasis on the United States but within a global context
- Emphasize fuel cycle dynamics and value of options for different growth scenarios and technology development
What are Nuclear Reactor and Fuel Cycle Economics?
(In a World Where the Costs for All Energy Options Are Rising)

- Update the economic assessment of nuclear reactor costs in the 2003 MIT report considering
  - Overnight Costs
  - Economics for regulated and unregulated utility markets
  - Implications of federal-government first-user incentives
  - Implications of carbon-credit trading

- What are the economics of once through and closed fuel cycles?

- What is known about fast-reactor economics?
  - Reactor costs dominate cost of nuclear power
## Baseload Electricity Costs (cents/kWh)

<table>
<thead>
<tr>
<th></th>
<th>Base case</th>
<th>Base -CO2</th>
<th>$25/ton capital cost</th>
<th>same</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear</td>
<td>8.4</td>
<td></td>
<td></td>
<td>6.6</td>
</tr>
<tr>
<td>Coal</td>
<td>6.2</td>
<td></td>
<td></td>
<td>8.3</td>
</tr>
<tr>
<td>Gas</td>
<td>6.5</td>
<td></td>
<td></td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>($7/mmBtu)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What Should Be Our Used Nuclear Fuel Storage Strategy?

- Storage can provide time to determine what is more important within the duality of Used Nuclear Fuel
  - Resource
  - Waste
- Storage is a nuclear-chemical process: heat and radioactivity decrease with time
  - Lowers reprocessing costs and risks
  - Lowers transport costs and risks
  - Increases repository capacity
- Approach to storage should be integral to fuel cycle choices/choice of storage time has major fuel-cycle impacts
- Three classes of storage option
  - At reactor (U.S.)
  - Centralized monitored retrievable storage
  - Combined Storage/Repository
What Are the Preferred Fuel Cycles for a Sustainable Future?

Compare/Contrast Multiple Cycles To Understand Range of Implications

- What are the implications to the repository and other waste management facilities of alternative fuel cycles?
- What are the uranium resource implications?
- What are the nonproliferation implications to the world of our choices for fuel cycles?
- What are the technical challenges of the alternative fuel cycle options?
What Are the Technical Challenges and Viability of Alternative Fuel Cycle options?

- Must consider the complete fuel cycle
  - Reprocessing
  - Fuel Fabrication
  - Reactors
  - Waste Disposal/Multiple streams from different fuel cycles
    - Separations small part of cost of reprocessing
- Commercial reprocessing is a relatively new enterprise
  - Value for long term waste management?
R&D Recommendations

- Align with reality of next decades
  - Global Uranium Resource Assessment
  - Enhancement and life extension of LWRs
  - New build LWRs/new materials, fuels,…
  - Long term dry storage assessment/engineered barriers

- Alternative disposal options
  - E.g. MA’s and deep boreholes
R&D Recommendations

- Explore long term options
  - Closed fuel cycles and fast reactors
  - Safety and operations analysis of fuel cycle facilities
  - Advanced simulation tool development/reactors and waste management systems
- Nuclear materials security
- Demonstrations?
Summary & Conclusions

- Changes since 2003 indicate the need to rethink fuel-cycle strategies.
- There is time to assess alternatives before selecting a path forward/focus on optionality.
- There are major questions that need to be addressed to provide a durable widely-supported long-term fuel-cycle strategy.
- The goals of the MIT study are to aid in the process to develop such a strategy.
- Identification of research, development and demonstration needs aligned with important fuel cycle options.