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Two Scales of Past Climate Variation 
at Yucca Mountain

• Transition from Tertiary to Quaternary climates
– Miocene and Pliocene conditions were wetter and milder
– Quaternary conditions were drier, and more seasonal
– Transition 2 to 4 m.y. ago

• Variations in Quaternary climate
– ~100,000-year cycles related to glaciation in the northern

hemisphere
– In southern Nevada, cycles consisted of: 

Colder, wetter pluvials
Intermediate/monsoonal periods
Warmer, drier interpluvials
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Future Climate Variation
• Estimates of climate change in next 500,000 years

– Based on analysis of orbital parameters and analog sites
– Six glacial cycles with conditions similar to previous 

cycles

Climate 
state

% of 
time

Mean annual 
temperature 

(°C)

Mean annual 
precipitation 

(mm)

Mean net 
infiltration 

(mm/yr)
Glacial 19 0 – 9 250 – 510 ?

Intermediate 68 9 – 10 200 – 430 2 – 38

Monsoon 3 13 – 17 125 – 400 12 – 25

Interglacial 
(modern) 13 13 – 14 120 – 180 0.4 – 12

Sources of information: Spaulding 1985; Forester et al. 1999; 
Thompson 1999; Sharpe 2003 (Yucca Mountain (YM) 
Site Description); Flint/Hevesi 2003 (YM Site 
Description)
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Records of Climate Change
• Surface records (temperature and precipitation) 

– Paleolimnology (sedimentological, paleontological, geochemical)
– Paleobotany (packrat middens, pollen)
– Sedimentology (weathering, calcrete formation, eolian and fluvial 

activity)
• Saturated zone (SZ) records

– Paleohydrographs (regional groundwater table fluctuations)
Discharge deposits (Amargosa and elsewhere)
Brown’s Room (Ash Meadows) deposits

– Paleorecharge compositions
Variations in meteoric water composition (Devils Hole)

• Unsaturated zone (UZ) records
– Pore water (δ18O, δ2H) and chlorine-36 (low resolution; limited to last 

pluvial cycle)
– Secondary hydrogenic minerals
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Importance of Unsaturated Zone 
Hydrogenic Minerals

• Represent a >10 m.y.-long record of deposition 
from water percolating through UZ fracture 
network

• Two types of information related to climate change
– Growth rates

Controlled by liquid and gas fluxes that can respond to 
climate-induced variations in infiltration

– Compositions (isotopic and chemical) 
Reflect climate-related changes in the compositions of 
percolating water at time of deposition



6YMPaces_NWTRB_03/9-10/04

Secondary Hydrogenic Minerals
• Secondary mineral coatings are distributed sporadically 

throughout the UZ on fracture footwalls and cavity floors
• Coatings are dominantly calcite with less 

abundant silica phases (opal, chalcedony)
HD2058     ESF 29+80 m     Cross section
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Dating Secondary Fracture Minerals

• Records of past climate require reliable 
geochronological framework

• Minerals can be dated by natural radioactive decay

Material Concentration Dating 
method

Dating
range

Amount of 
material used (mg)

230Th/U ~1 to 400 ka ~0.001 to 10’s

234U/238U 100 to 1,500 ka ~0.001 to 10’s

207Pb/235U 0.1 to 12.7 Ma 0.1 to 10’s

~0.01-1 ppm U 230Th/U ~1 to 400 ka ~50 to 200

12 wt% C 14C 0 to 50 ka 10 to 20 mg

Calcite 
(CaCO3)

Opal 
(SiO2•nH2O)

10 to 500
ppm U
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Initial Dating of Outermost Surfaces

• Outer surfaces of nearly all 
UZ mineral coatings have 
Pleistocene 14C and 
230Th/U ages

• Problematic aspects:
– Wide range of ages for 

subsamples from the same
outer surface

– Youngest ages from the
thinnest subsamples

– Isotopic systems with larger
half-lives yield older ages

– Unexpected behavior for U-series 
isotope systematics
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Conceptual Models of Mineral Deposition

• Instantaneous, episodic, or continuous mineral growth
• Dating results depend on relations between layering, 

subsample thickness, and rates of radioactive decay
– Slow growth rates

can result in sub-samples 
consisting of mixtures 
of older and younger 
material

– Effect on calculated
age is even more
substantial when the
rate of growth
approaches the rate
of radioactive decay
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Numerical Model of Continuous Deposition
• Predicts a number of features 

observed in fracture mineral 
data sets:
– Positive correlations between 

age and subsample thickness
– Growth rates slower than 

~5 mm/m.y.
– Discordant ages between 

different isotopic systems
– U-series systematics that mimic 

observed patterns
• Conclusions

– Measured isotopic 
compositions are mixtures of 
older and younger material

– Thinnest samples yield 
calculated ages closest to true 
ages
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U-Pb Dating of Interior Layers

• Growth histories extended by dating of interior layers
– U-Pb dates are usually concordant with microstratigraphy
– Basal layers range from 4 to 10 Ma
– Used to calculate long-term average growth rate
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U-Pb Dating of Interior Layers
(Continued)

• Depth-age relations 
indicate average Tertiary 
growth rates between 
1 and 5 mm/m.y.

• Growth rates are 103 to 
>106 slower than 
published speleothem 
growth rates

• Long-term average 
growth rates are 
generally consistent for 
different parts of a 
single mineral coating
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Isotope Variations in Mineral Coatings
• Profiles across 

individual coatings 
show patterns of δ18O, 
δ13C, and δ87Sr 
variation with 
microstratigraphy

• Relative ages can be 
assigned by micro-
stratigraphic position

• U-Pb ages for interior 
layers form a 
framework allowing 
interpretation of 
observed isotope 
variations

Isotope Early-
stage

Late-
stage

δ13C +6 ‰ -6 ‰
δ18O +10 ‰ +18 ‰
δ87Sr +1.8 ‰ +4.5 ‰

Typical Values
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δ13C Variations in Mineral Coatings
• Changes in δ13C interpreted to reflect shifts in local flora

Time period Climate Dominant 
flora

Photo-
synthetic 
pathway

Soil 
calcite 
δ13C (‰)

Tertiary Wetter, milder Grasses C4 +2 to -5

Quaternary Drier, seasonal Shrubs, 
succulents

Mixed C3
and C4

-5 to -8

Transition between 2 
and 3 Ma correlates 
with a major shift in
climate conditions 
throughout northern 
hemisphere
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Quaternary Stable Isotope Records
• 600,000-year record of Devils Hole SZ water 

compositions (Winograd et al. 1992)
– δ18O:  13‰ to 16‰

Reflects changes in mean annual temperature

– δ13C:  -3‰ to -1.5‰
Reflects changes 
in vegetation

• δ18O and δ13C 
signals show 
strong negative
correlation
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Stable Isotopes in Late-Stage 
Unsaturated Zone Calcite

• Late-stage UZ calcite 
(last 2 – 3 m.y.) has a total 
range of values (~3 ‰) 
similar to variations at 
Devils Hole
– Correlation between

δ18O and δ13C is not obvious; 
however, temperature-depth
relations may account
for some δ18O variation

• Interpreted to indicate
– No obvious control of

Pleistocene climate on 
percolating UZ water

– Calcite deposition is not 
restricted to single climate 
state SMOW = standard mean ocean water

*
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Micro-Records of Quaternary Climate

• Evaluation of Quaternary climate variations require age resolutions 
at 1,000-year time scales

• Slow growth rates require sampling resolution finer than previous 
efforts (100s of µm)

• Two approaches:
– Ion microprobe
– In situ micro-digestion

• Sample HD2074:
– Thick coating on 

lithophysal cavity floor
– Exploratory Studies 

Facility station 30+51
(TSw)

– ~270 m below land
surface (repository 
horizon)
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Ion-Microprobe Dating

• Secondary ionization 
mass spectrometry 
(SIMS) 
– Primary oxygen ion beam 

focused to ~40 µm spot 
size - generates 
secondary U and Th ion 
beam from opal target

• Compared to standard 
methods
– Lose precision due to 

small intensity of ion 
beams

– Gain accuracy due to finer 
spatial resolution

USGS-Stanford SHRIMP-RG
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Ion-Microprobe Results

• Depth traverses for two separate opal hemispheres
– Outermost spots consistently yield dates of ~50 ka
– Partial overlap of outer surface yields younger date: indicates spots are 

mixtures of older- and younger-aged material
– Inner layers become progressively older with depth (to 1.4 m.y.)

Transmitted light images

Reflected light images



Ion-Microprobe Growth Rates

• Age-depth relations indicate average 
growth rates of 0.6 to 0.7 µm/k.y. 
over the last 1.5 m.y.

• No discernable variation in growth 
rates with time, given spatial and 
analytical resolution

• Growth rates calculated for 
Pleistocene opal are lower than 
those determined from U-Pb data 
across whole coating (5 µm/k.y. for 
HD2074)
– Consistent with a shift to increased 

aridity and decreased percolation flux

20YMPaces_NWTRB_03/9-10/04



21YMPaces_NWTRB_03/9-10/04

Microdigestion-Thermal Ionization 
Mass Spectrometry Dating

• In situ digestion of 
outermost opal layers
– Acid confined by wax dam 

or embedding in epoxy
– Acid removed after 2 to 

10 minutes along with thin 
layer of dissolved opal

– Solution is spiked and 
analyzed by thermal 
ionization mass 
spectrometry (TIMS)

• Results give younger 
ages and higher initial 
234U/238U than whole-
hemisphere digestion

Sample 
HD2074

Thick-
ness 
(µm)

230Th/U 
date (ka)

Initial 
234U/238U 

AR
Whole-

hemisphere 
digestion

~1,000 150 –
230 2.7 – 4.2

Single 
micro-

digestion
<5 4.0 –

11.6 6.1 – 7.0
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Sequential Microdigestion
• Microdigestion method can 

be used to analyze 
progressively deeper layers 
within a single hemisphere

• Use identical hemisphere 
dated previously by ion 
microprobe (HD2074-g2)

• For HD2074-g2, 22 µm of 
opal were removed in 
8 separate digestion steps
– Each digestion step removed 1.5 

to 4 µm of opal
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Sequential Microdigestion Results

• 230Th/U ages increase with 
depth from 7.3 ±0.7 ka to 
37.1 ± 2.3 ka

• Age-depth relations for all 
8 microdigestions yield an 
average growth rate of 
0.68 ±0.22 µm/k.y.

• Data may define two 
different slopes with an 
inflection around 25 ka

• Regressions indicate a 
non-zero age for
outermost opal
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Additional Ion-Microprobe Studies
• Initial efforts to analyze δ18O in late-stage calcite
• Presence of a Pleistocene climate signal?

– Profiles across outer parts of calcite blades show 3 to 4‰ 
range in δ18O, similar to conventional analyses of UZ calcite

– Possible systematic patterns of δ18O variation with time

~30 µm-diameter 
spot analyses 
across outer 
2 mm of opal-
tipped calcite 
blade
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Additional Ion-Microprobe Studies
(Continued)

• Development of U-Pb dating by ion microprobe
– Collaboration with A. Nemchin, Curtin University, Western Australia

• As with U-series, 2030 µm spot 
diameters result in less precise 
but more accurate 
U-Pb ages

• U-Pb ages for HD2059 outer 
opal sheet yield a Pleistocene 
growth rate of 0.92 mm/m.y.

• Older U-Pb ages for deeper 
layers

• Growth rate for entire 
17 mm-thick coating is higher 
(2.0 ± 0.2 mm/m.y.)
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Conclusions - I

• Mineral record reflects the gradual climate shift to more arid 
Quaternary conditions
– Average Pleistocene UZ mineral growth rates (<1 mm/m.y.) are 

systematically lower than Tertiary growth rates (1–5 mm/m.y.)
– Timing and δ13C compositional shift in UZ calcite is consistent with a 

climate-controlled shift in flora 

• Slow, uniform growth rates (~1 µm/k.y.) are consistent with a 
UZ hydrogeologic system that
– Is buffered from extreme events and short-term hydraulic fluctuations
– Shows long-term hydrologic stability

• Late-stage calcite has δ13C and δ18O compositions that span 
the range expected for Pleistocene meteoric water
– Implies that deposition was not limited to only part of the Quaternary 

climate cycle
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Conclusions - II
• Very high degrees of spatial resolution are necessary 

to resolve Pleistocene climate signals
• Microdigestion dating implies that UZ percolation is not 

completely buffered from long-term Pleistocene climate 
change
– Above-average growth rates (increased flux) may be present 

during full-pluvial climate states (37 to 20 ka)
– Below-average growth rates (decreased flux) may be present 

during intermediate climate states (25 to 7 ka)
• Interpluvial (modern) percolation flux may be too low to 

exceed seepage threshold
– Depositional hiatus over last few thousand years

Middle Holocene ages for outermost microdigestions
Age intercepts for depth-age regressions between 3 and 10 ka
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