Precarious Rocks, Shattered Rock, and Seismic Hazard at Low Probabilities for Yucca Mountain

Presentation to the Nuclear Waste Technical Review Board
February 24, 2003
Las Vegas, Nevada

James N. Brune
John G. Anderson
Nevada Seismological Laboratory
University of Nevada, Reno
Ways probabilistic seismic hazard analysis (PSHA) could be wrong at low probabilities:

- Mean values of regressions are incorrect

 or

- Uncertainty is not handled correctly.
Example. Lab measurements of peak acceleration on a fault in a foam rubber model.
Statistics of Multiple Foamquakes, Extrapolated

- Backward Directivity
- Intermediate
- Forward Directivity
- Combined

Logarithmic scale

Gaussian model

Peak Acceleration, g

"Characteristic earthquakes" vs "Characteristic ground-motion earthquakes"

Epistemic (Errors in time domain)

Ergodic assumption

Euror (Experimentally verifiable)
Uncertainty Issues

• SSHAC (1997) distinguished between aleatory and epistemic uncertainties, and showed how these should be treated differently in PSHA.

• Anderson and Brune (1999) proposed that, due to the ergodic assumption, aleatory uncertainty is overestimated and epistemic uncertainty is underestimated.
Definitions

• *Aleatory (random) uncertainty*: Uncertainty due to the inherent randomness in a physical process.

• *Epistemic (knowledge) uncertainty*: Uncertainty due to the lack of knowledge about the behavior of the system.
Ergodic process:

- A random process in which the distribution of a random variable in space is the same as the distribution of that same random function at a single point when sampled as a function of time.
Ergodic assumption in PSHA:

- Regression analysis derives a mean curve to predict ground motions, as a function of magnitude and distance (or other parameters), and infers the standard deviation of this ground motion by the misfit at multiple stations. The assumption that uncertainty of ground motions over time at a single point is the same as the standard deviation derived this way is an ergodic assumption.
Characteristic Ground Motion Earthquake

• Repeats identically in both static offset and dynamics of rupture, resulting in identical ground motions every time.

• Our conclusions from considering the model:
 – Aleatory uncertainty should only include effects that vary in time, i.e. differences from one earthquake to the next on the same fault.
 – All effects of spatial variability of ground motion during a single earthquake should go into the epistemic category.
Assumptions

• We assume that a plausible physical model is that:
 – 1. The experts are approximately correct in their estimates of mean ground acceleration, but the low probability tails on the distribution curves are suspect.
 – 2. The appropriate statistical model is likely to be somewhere between the ergodic extreme and the anti-ergodic extreme (characteristic ground motion model).

• Given this we need to look for field evidence to determine the more appropriate models.
Precarious rocks are one of the few ways to check on probabilistic seismic hazard. They appear to suggest that psha overestimates the hazard in some locations. They also place constraints on earthquake source physics in great earthquakes.
Figure 7-4 Integrated seismic hazard results: summary hazard curves for horizontal PGA

San Andreas
Shattered rock, hanging wall, thrust fault
Precarious rock, unshattered, foot wall, thrust fault.
Creation of a balanced rock by erosion.
A schematic cross section through welded tuff of the western face of Yucca Mountain

Dirt filled cracks get progressively wider away from slope.

Alluvium removed by acute erosion in cliff face.

EXPLANATION

| Alluvium | Bedrock | Joint | Open fracture |
Fracture age ~10 Ma

Not shattered
Table 2: Field and laboratory toppling accelerations

<table>
<thead>
<tr>
<th>Label</th>
<th>Rock ID#</th>
<th>Toppling Acceleration/g</th>
<th>Rock</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>92 JB NC 01</td>
<td>0.14</td>
<td>0.10</td>
<td>0.16</td>
</tr>
<tr>
<td>B</td>
<td>93 RC SC 83</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>92 JB 8T 02</td>
<td>0.17</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>D¹</td>
<td>92 JB 8T 01</td>
<td>0.34</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>D²</td>
<td>92 JB 8T 01</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>93 JB 8T 02</td>
<td>-</td>
<td></td>
<td>0.3</td>
</tr>
</tbody>
</table>
Approximate Ages of Precarious Rock Pedestals at Yucca Mountain

<table>
<thead>
<tr>
<th>Sample</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whitney 1</td>
<td>242 ka</td>
</tr>
<tr>
<td>Whitney 2</td>
<td>56 ka</td>
</tr>
<tr>
<td>Whitney 3</td>
<td>88 ka</td>
</tr>
<tr>
<td>Len 4</td>
<td>81 ka</td>
</tr>
<tr>
<td>Len 5</td>
<td>79 ka</td>
</tr>
<tr>
<td>Len 6</td>
<td>74 ka</td>
</tr>
<tr>
<td>7-CBD</td>
<td>174 ka</td>
</tr>
<tr>
<td>8 CBD</td>
<td>154 ka</td>
</tr>
<tr>
<td>9 ACRS</td>
<td>32 ka</td>
</tr>
</tbody>
</table>
Examples of precarious rocks found in the vicinity of Honey Lake fault.

Constraints on Normal and Transtensional Faulting
Foot wall of normal faults
Precarious rock constraints compared with recent strong motion data

A Punchbowl 1812, 1857

- USGS-CDMG 2% in 50 yr
- USGS-CDMG 10% in 50 yr
- WGCEP 50% in 1000 yr
- Ward 2% in 50 yr
- Stirling & Wesnousky 2% in 50 yr
 in Brune (1996)
- Median Regression, M8,
 Abrahamson and Silva, 1997

Trans-tensional?

\[M = 7.4 \text{ Aug 17} \]
\[M = 7.2 \text{ Nov 12} \]

\{ Turkey 1999 \}

- Honey Lake
- Beaverton
- Antelope Buttes 1812 1857

James N. Brune
Conclusions

• The precarious rocks possibly provide constraints on low-probability ground motions at Yucca Mountains.

• The ground motions implied by the precarious rocks are smaller than those determined by the PSHA.