Rail Transportation of SNF

By: Robert E. Fronczak, P.E.
Assistant Vice President Environment & Haz Mat
Association of American Railroads

Nuclear Waste Technical Review
Board July 10, 2000
Outline of AAR Activities

- Rail Industry Goal
 - "A dedicated cask / car / train system that ensures cask integrity in the railroad operating environment and allows timetable speeds with no restrictions on meets and passes."
- Performance Standard for SNF Trains
- Modal Study
Performance Standard for Spent Nuclear Fuel Trains

- First draft December 1998
- Approved by the Equipment Engineering Committee at their March 2000 meeting
- Includes all cars in the trains including buffer cars, personnel cars
- Requires modeling before construction
- Requires full scale dynamic testing of each car and the train
- Circular letter C-9149 issued May 23, 2000
- Comments due June 26, 2000, effective 9/1/00.

Design Requirements

- Structural analysis
 - Standard AAR Freight load cases
 - Load cases for passenger cars
 - Crash worthiness
 - Securement system design (Rule 88-A.15.c)
 - Longitudinal 7.5, Vertical 2.0, Lateral 2.0
- Fatigue design
- Weld analysis

Association of American Railroads

Nuclear Waste Technical Review
Board July 10, 2000
Design Requirements (cont.)

• Non Structural Static Analysis
 – Truck twist equalization
 – Car body twist equalization
 – Truck warp restraint
 – Static curve stability
 – Curve negotiation
Design Requirements (cont.)

• Dynamic Analysis
 – Perturbed track performance
 • Twist and roll
 • Pitch and bounce
 • Yaw and sway
 • Dynamic curving
 – Perturbed Special Cases
 • Single bump
 • Curving with single bump perturbation
Design Requirements (cont.)

- Dynamic Analysis (cont.)
 - Unperturbed track Performance
 - Hunting
 - Constant curving
 - Curving w/ various lubrication conditions
 - Limiting spiral negotiation
 - Turnouts and crossovers
 - Ride quality
 - Buff and draft curving

Nuclear Waste Technical Review
Board July 10, 2000
Design Requirements (cont.)

- Dynamic Analysis (cont.)
 - Braking effects on steering
 - Worn component simulations

- Brake System Design
 - Electronically Controlled Pneumatic Brakes
 - Brake ratios and shoe force variations
 - Jerk rates
System safety monitoring:

- Location
- Truck hunting
- Wheel flats
- Braking performance
- Vertical acceleration
- Longitudinal acceleration
- Ride quality
- Speed
- Rocking
- Bearing condition
- Ride quality
- Lateral acceleration
- Braking performance
Diagram of Typical SNF Dedicated Train

Data or Voice Data Radio and GPS unit for location

Locos ~ 100 ton buffer car

Electronically Controlled Pneumatic (ECP) Brakes entire train

Cask Monitoring

Cask cars

Enhanced performance trucks

Defect detection (all cars) including:

Truck hunting, rocking, wheel flats, bearing condition, ride quality, braking performance, vertical acceleration, and longitudinal acceleration.

Association of American Railroads

Enhanced Performance Trucks

Standard Car truck's S-2-HD Design--37 car sets
Frame brace
Primary suspension shear pad
D5 secondary suspension

Nuclear Waste Technical Review
Board July 10, 2000
Approval Process

- AAR’s Equipment Engineering Committee (EEC) governing body
- Preliminary design review
- Submittal of full scale test reports
 - Individual cars
 - Multiple cars
 - Post test analysis
- Final design and approval
 - Conditional
 - Full approval (100,000 miles of operation)

Nuclear Waste Technical Review
Board July 10, 2000
Modal Study

- Are impact limiters designed to stay on the cask in the event of an impact?
- Crush loads are a real possibility on rail accidents.
- Study needs to update credible severe accidents.
- Relate the forces involved in railroad accidents to those the cask is tested for.

Association of American Railroads

Modal Study (cont.)

- Update the modeling techniques used in the study.
- Wayside conditions in the modal study were based on highway conditions, not rail.
- Comments filed with NRC in January 2000 as input to the rewrite of the Modal Study