Scientific and Engineering Testing Update

Presented to:
Nuclear Waste Technical Review Board

Presented by:
Dr. Mark T. Peters
Manager, Test Integration Department
Los Alamos National Laboratory
Civilian Radioactive Waste Management System
Management and Operating Contractor

August 1, 2000
Overview

- Objective is to provide status on scientific and engineering testing program in support of natural and engineered systems process models and design

- Exploratory Studies Facility (ESF) Studies
 - Drift Scale Test
 - 36Cl Validation

- Cross Drift Studies
 - Niche 5
 - Systematic Hydrologic Characterization
 - Bulkhead Investigations
Overview

(Continued)

- Busted Butte Unsaturated Zone Transport Test
- Saturated Zone Investigations
 - Alluvial Testing Complex
- Engineered Barrier System Studies
 - Pilot-Scale Testing
 - Ventilation Testing
 - Waste Package Materials Testing
- Summary
Exploratory Studies Facility and Alcoves
Drift Scale Test (DST)
Evaluate thermally-coupled processes in potential repository horizon rocks at the field-scale in support of Coupled Process Models, Near-Field Environment Models, and Design
DST Measured Power and Temperature

- Total Power
- Drift Wall Temperature

Ventilation System Rework

Dec 3, 1997

Total Power (Kilowatts)

Temperature (°C)

Time (Days)

- Power
- Wall Temp. (Top)
- Wall Temp. (Left)
- Wall Temp. (Right)

Approx. Thermal Sensor Location (Not to Scale)

TC-19
TC-23
TC-24

Plan View
Profile
DST Gas Chemistry Evolution
DST Water Chemistry Evolution

Measured vs. Modeled pH

pH

Time (Months)

6.00 7.00 8.00 9.00

0 3 6 9 12 15 18

603 1863 602 Modeled
36Cl Validation

- Validate occurrence of “bomb-pulse” 36Cl at two locations in the ESF (Sundance Fault Zone and Drillhole Wash Fault Zone) in support of UZ Flow Model

- Path Forward
 - Prepare reference sample for interlaboratory comparisons -- USGS has prepared and distributed aliquots to LLNL and LANL
 - LLNL and LANL document how they plan to test for the effect of different leaching procedures on the release of rock Cl (ongoing)
 - Laboratory work and comparison of results (ongoing)
Path Forward (cont.)

- Team agrees on a standard processing method to apply to the reference sample and validation samples
- USGS conducts tritium analyses of water extracted from validation samples -- to date, 38 analyses have been completed from the Sundance Fault zone and only one analysis exceeds the detection limit
- Team synthesizes results and prepares report
Cross Drift Studies
Niche 5

- Evaluate drift-scale seepage processes and seepage threshold in potential repository horizon rocks (Topopah Spring Lower Lithophysal Unit) in support of UZ Seepage Model
- Niche Excavation and Flow Path Characterization Completed
- Post-excavation Air Permeability Tests in Progress
- Niche Bulkhead Installed for Seepage Threshold Tests under Ambient Humidity Conditions
Comparison of Lower Lithophysal and Middle Nonlithophysal Flow Paths

Lower lithophysal tuff may have:

- **Stronger capillarity**
 (from liquid flow paths observed)

- **Higher permeability**
 (from Niche 5 air injection tests reported on 5/1/00 and from Cross Drift systematic hydrologic characterization results)

Than middle nonlithophysal tuff

⇒ Potentially Higher Seepage Threshold
Water Entering a Lithophysal Cavity from Below by Capillary Suction

No evidence of dripping into cavities (isolated spots on ceiling and floor) was observed in other lithophysal cavity photos.

⇒ Possible alternative explanation of calcite observed at the bottom of lithophysal cavities.
Systematic Hydrologic Characterization - Rationale/Approach

- Provide data on the scales of rock variability and heterogeneity in rock properties (e.g., fracture properties) in support of UZ Seepage Model

- Phase I of air permeability and seepage testing conducted systematically along the Cross Drift in Lower Lithophysal unit from CS 14+44 m to the first bulkhead at CS 17+63 m (one slant borehole or borehole cluster per 30 m of drift)
Systematic Hydrologic Characterization - Progress

- Air permeability and liquid release tests were conducted along borehole ECRB-SYBT-La#2 at Cross Drift CS 17+26 m
- Vertical distance of mid-zone to drift crown for zones 1, 2, and 3 are respectively: 1.58, 2.84, and 4.10 m
- Seepage tests range from high rate (450 ml/min, point release, < 24 hour) to low rate (30 ml/min, line release, multiple-zone, multiple-week) tests
Systematic Hydrologic Characterization Testing along Cross Drift
Air Permeability Distributions - Update with New Measurements by Systematic Hydrologic Characterization

- Middle Non-Lithophysal Main Drift Niches
- Lower Lithophysal Cross Drift Niche 5
- Lower Lithophysal Systematic Hydrologic Characterization borehole #2
Cross Drift Studies
Bulkhead Investigations

- Evaluate flow and seepage processes in potential repository horizon rocks and Solitario Canyon Fault Zone in support of UZ Flow and Seepage Models
- Construction of third bulkhead, rewiring of lights, and installation of additional instrumentation in drift (temperature, wind speed, and drip cloths) ongoing
- No apparent evidence of seepage
Busted Butte Unsaturated Zone Transport Test

- Evaluate influence of heterogeneities on flow and transport
- Evaluate other aspects of site, including fracture/matrix interactions and permeability contrast boundaries
- Consider colloid migration in unsaturated zone (UZ)
- Test use of laboratory sorption data at field scale
- Calibrate and validate site-scale UZ flow and transport model
- Address scaling issues
Busted Butte Tracers for Phase I and Phase II

Phase I:
- Lithium Bromide
- Potassium Iodide
- Fluorescent polystyrene latex microspheres (two sizes)
- Plutonium Analogs, (colloidal form)
- Sodium Fluorescein
- Pyridone
- 2,4-difluorobenzoic acid
- 2,6-difluorobenzoic acid
- 2,4,5-trifluorobenzoic acid
- 2,3,4,5-tetrafluorobenzoic acid
- Pentafluorobenzoic acid

Phase II (Same as Phase I plus):
- Neptunium Analogs (Np5+):
 - Nickel (II) chloride hexahydrate
 - Cobalt chloride hexahydrate
 - Manganese chloride tetrahydrate
- Plutonium Analog, (Pu3+):
 - Samarium Chloride hexahydrate
- Americium Analogs (Am3+):
 - Cerium (III) chloride heptahydrate
- Rhodamine WT
- Potassium Iodide replaced microspheres on 8/18/99
Busted Butte Test Layout: Phase II

Injection Rates:
- Hole 23 is 1ml/hr
- Holes 18, 20, and 21 are 50 ml/hr
- Holes 24-27 are 10 ml/hr
Phase 2 - Status

- Phase 2 has been running for 22 months
- Nearly 15,000 pads collected (as of June 7, 2000)
 - 3012 pads extracted or underway
 - Over 15,000 analyses complete
- Multiple geophysical logging runs (ground penetrating radar, electrical resistivity tomography, and neutron logging)
Tracer Observations

- Breakthrough of non-reactive tracers at all boreholes except 10, 11, and 47
- Breakthrough of lithium at boreholes 9, 13, 14, 15(?), 16, 17, 46, and 48
- No breakthrough of transition metals
Modeling: Phase 2

- **Results:**
 - No faults, three layers
 - Looking at Bromide
 - Model shows good match of characteristics
 - Some boreholes show excellent quantitative match

- **What factors might be affecting the model results?**
 - More accurate geology
 - Dispersion
 - Heterogeneity
Tracer Data (Bromide) vs Simulation

Borehole #16

- Simulation
- Field Data

Concentration vs X-Distance (m)

T = 125 d
T = 239 d
T = 183 d
T = 337 d

Unsaturated Zone Transport Test
Yucca Mountain Project
Nye County Early Warning Drilling Program

Site-Scale Data Being Collected for the SZ Flow and Transport Model:

1. Lithologic data into the hydrogeologic framework model
2. Water-level data for flow field calibration
3. Hydraulic testing data for flow and transport models
4. Laboratory sorption measurements (237Np, 129I, and 99Tc) on alluvium for process models and TSPA
5. Hydrochemistry data for flow field calibrations
6. Eh/pH data for use in flow and transport models
7. Hydraulic and transport testing of alluvial aquifer for flow and transport models
Alluvial Testing Complex

- Drilling of Nye County Well NC-EWDP-19D/D1 complete
 - Alluvium from ground surface to 812 feet (static water level at 366 feet); Miocene volcanic tuffs from 812 - 1230 feet; Tertiary sedimentary rocks from 1230 - 1438 feet

- Hydraulic testing ongoing
 - Nye County conducted flow surveys and 48-hour open-hole hydraulic test of entire section exposed in borehole
 - YMP conducted an open-hole hydraulic test (7 day pump/7 day recovery) of the alluvial aquifer to a depth of 812 feet to determine the transmissivity and storativity of the entire alluvial aquifer
 - Distant and nearby wells also monitored
 - Pumped at 150 gpm with over 100 feet of drawdown (less drawdown than Nye County open-hole hydraulic test)
Alluvial Testing Complex
(Continued)

- Isolated-interval hydraulic testing of four intervals in alluvium to take place in late FY00
- Isolated-interval tracer testing (“push-pull” with conservative, reactive, and microspheres) to take place in early FY01
Engineered Barrier System Studies Pilot-Scale Testing

- Evaluate various engineered barrier configurations and provide data in support of EBS process models
Pilot-Scale Tests - Canisters 1, 2, & 3

Canister 1

Test Conditions
- Ambient temperature, insulated
- Superpluvial infiltration rate
- Capillary barrier configuration

Results
- Over 97.5% of the injected water was diverted by the capillary barrier or stored in backfill

Canister 2

- Ambient temperature, insulated
- Superpluvial infiltration rate
- Plain backfill

Results
- Water moved downward by gravity and spread laterally around simulated waste package

Canister 3

- Elevated temperature, insulated
- Superpluvial infiltration rate
- Drip shield - no backfill

Results
- Drip shield effectively protects mock waste package from drips
- Drip shield creates an environment next to waste package that lowers relative humidity and inhibits condensation
Engineered Barrier Test - Canister 4
Heated plain backfill test with drip shield

Test Conditions
• Temperature-controlled mock waste package and canister (insulated)
• Waste package- 80°C, Test Cell- 60°C
• Superpluvial infiltration rate

Test Configuration
• 4 m long canister, 1.4 m diameter (1/4 scale)
• Overton sand backfill covering drip shield

Test Results
• The drip shield effectively shields the mock waste package from drips
• The drip shield creates an environment around the waste package that is warmer than the drift which lowers relative humidity and inhibits condensation
• Increased moisture in backfill increases thermal conductivity

Status
• Test started Dec. 22, 1999
• Completed May 11, 2000
Engineered Barrier System Studies
Ventilation Test

- Provide data for validation of Preclosure Ventilation Model

- Test Design
 - Simulated Emplacement Drift 190 feet long - 54 in id Culvert Pipe
 - Simulated Waste Package (16 in id steel pipe)
 - 25 Simulated Waste Packages
 - 0.35 kW/m of power output
 - Expected Simulated Waste Package Surface Temperature 200°C
 - Intake air Velocity 60-150 fpm
 - Maximum Temperature at Crown 100°C
Test Status/Schedule

- Phase I - Heat only with ambient air (August, 2000)
- Phase II - Heat only with conditioned air (1st Quarter FY01)
- Phase III - Heat-moisture with conditioned air (2nd Quarter FY01)
- Phase IV - Blast cooling with ambient air (Last Quarter FY01)
- Test Report - Last Quarter FY01
Engineered Barrier Systems Testing
Waste Package Materials

- Long-term tests have been underway (>2 years) under a range of conditions (immersed, water line, and vapor) to evaluate general and localized corrosion rates

- Tests include corrosion-allowance (carbon and alloy steels), intermediate corrosion-resistant (Cu-Ni alloys), and corrosion-resistant (Ni-rich, Ni-base, and Ti alloys) materials with different geometries (weight loss coupons, U-bend specimens, and creviced specimens)

- Test conditions range in temperature, ionic strength, and pH
Engineered Barrier Systems Testing
Waste Package Materials
(continued)

- Specimens removed from long-term tests and evaluated for weight loss and presence of crevice and localized corrosion

- Standard Microscopic Techniques and Atomic Force Microscopy are being performed on alloy 22 and standard Ti alloys to follow corrosion processes and to elucidate passive film stability
Summary

- Ongoing testing in ESF, Cross Drift, Atlas Facility, and Corrosion Test Facility continues to address key processes in natural and engineered systems.
- Data collected and analyzed that result from these investigations will be reported in Technical Update Documents and incorporated into the Site Recommendation as appropriate.