Site Program Activities Addressing Key SZ Issues

Presented to:
Nuclear Waste Technical Review Board

Presented by:
Dr. Dwight T. Hoxie
Manager, Process Modeling and PA Support
Natural Environment Program Operations

January 20-21, 1998
Key SZ Issues

- Expert-elicitation panel was asked to assess these specific SZ flow and transport issues:
 - Conceptualization of SZ flow
 - Large hydraulic gradient
 - Ground-water flux beneath Yucca Mountain
 - Influence of climate change
 - Conceptual models of SZ transport
 - Dilution factor/dispersivity
 - Effective fracture density
 - Hydrochemical transport parameters
Conceptualization of SZ Flow

- Refine conceptual models of regional and site ground-water flow systems through:
 - Additional collection of field data
 - Heuristic modeling of ground-water flow and tracer movement to test hypotheses
Large Hydraulic Gradient

- Boreholes G-2, WT-24, and WT-18
 - Hydraulic testing
 - Geophysical logging
 - Core analysis

- Ground-water flow modeling to test conceptualizations
Flux Beneath Yucca Mountain

- Refine potentiometric gradient
 - Boreholes WT-24 and SD-6
- Determine hydraulic conductivity
 - Hydraulic testing at C-Wells and at planned
 Second Testing Complex (STC)
- Ground-water flow modeling to calculate flux
 magnitude and direction as functions of
 space and time
Influence of Climate Change

- Bound estimates of long-term climate change (10 - 100 ky) based on Owens Lake core analysis
- Evaluation of modern and past ground-water discharge sites
- UZ/SZ calcite morphology/geochemistry
- Ground-water flow modeling with increased recharge rates
Conceptual Models of SZ Transport

- Ground-water isotope geochemistry
- Application of heuristic transport modeling capability to test flow and transport pathway conceptualizations
- Refine computational grid of site-scale SZ flow and transport model
Dilution Factor/Dispersivity

- Tracer testing
 - C-Wells and STC
- Ground-water isotope geochemistry
- Heuristic transport modeling and sensitivity analyses
Effective Fracture Density

- Hydraulic testing and flow surveys
 - C-Wells and STC
- Transfer of ESF fracture mapping data
 - Distributed fracture density in TSw unit
 - Discrete fracture zones, e.g., associated with faults
Hydrochemical Transport Parameters

- Tracer Testing
 - C-Wells and STC
- Field determinations of ground-water oxidation state
- Laboratory evaluations of
 - Radionuclide solubilities
 - Effective K_d's
 - Colloidal facilitated transport
Summary and Conclusions

- Ongoing and planned SZ testing and modeling activities are targeted on reducing uncertainty associated with the identified key SZ flow and transport issues.