Treatment Options
for
Aluminum SNF Disposition

Natraj Iyer
Westinghouse Savannah River Co.
Savannah River Site
Presentation to the Panel on the Repository
Nuclear Waste Technical Review Board
December 17, 1997

Metallurgy and Corrosion
Alternate Aluminum SNF Treatment Technology
Outline

• Aluminum Spent Nuclear Fuel
 • Background
 • Corrosion Performance in Wet Storage (Initial As-Received Condition)
 • Corrosion Performance in Dry Storage

• Proposed Path Forward
 • Direct/Co-Disposal
 • Dilution Technology - Melt-Dilute Form
Aluminum MTR Fuel Microstructures

As-Fabricated UAlx MTR Fuel

As-Fabricated U3O8-Al Fuel

As-Fabricaled U3Si2-Al MTR Fuel

Aluminum MTR SNF Microstructures

Irradiated UAlx MTR Fuel

Irradiated U3O8-Al Fuel

Irradiated U3Si2-Al MTR Fuel
Corrosion Performance of As-Received Aluminum SNF

- Key to Corrosion Performance
 - Environmental Condition
 - Integrity of the Oxide Layer

- Reactor Service
- Basins of Origin
- SRS RBOF and L Basins

SNF with Pitting Corrosion
Worst Case SNF Condition - FRR Receipts Program
Total Pitted Area: < 1% SNF Surface

MTR SNF After 25 Years Wet Storage

Alternate Aluminum SNF Treatment Technology

- FY97
 - SRS Initiated Aggressive Implementation of Alternate Aluminum SNF Treatment Program

- Technology Development Program ➔ Dual Track Approach

Direct Disposal

Dilution Option
Alternative Aluminum SNF Treatment Technology
Technology Decision Drivers

Aluminum SNF Form
Development and Qualification
Direct Disposal/Co-Disposal Technology Development

SNF Form Development - Road Ready Package
- Developed Storage Criteria for Al SNF
- Drying Criteria and Specification
 - Field Vacuum Drying Tests
 - Issued Drying Specifications
- Developed Preliminary Functional Requirements for Storage Facility
- Developed Shielded, Instrumented Test Canister
 - Validation of Storage Criteria
 - Lead Surveillance

SNF Form Performance - Criticality Analysis
- Intact SNF Canister
- Degraded SNF in Waste Package
- SNF: HEU and LEU Fuel
- Assumptions
 - Fully Loaded to Physical Limit
 - Fully Flooded WP
 - Boron and Oil Poison
- Preliminary Results

SNF Form Performance - Degradation Models & Materials Reconfiguration
- Developed Corrosion Models for Air Vapor Environments
- Developed Gas Release Rate Models
- Models for Degradation in Waste Package
- Developed Creep Models

SNF Form Performance - Validation of Models
- Road-Ready Storage
 - CFDS-FLOW 3D Code
 - convective heat transport
 - Benchmarked
 - Fuel T <= 200°C
- Repository Storage
 - Codes 2D FIDAP; CFDS-FLOW 3D

Direct Disposal Accomplishments
Melt Dilute Waste Form Accomplishments

Melt Dilute Waste Form Technology Development

AI SNF Form Development - Bench Scale
- Developed Bench Scale Apparatus
- Established Process Feasibility
 - Induction vs. Resistance
 - Induction vs. Mechanical Stirring
 - Evaluated Crucible Materials
 - Evaluated Dilution Levels
 - Evaluated Process Cycles

AI SNF Form Process Requirements
- Analyzed Radium-226 Inventory in FRR/DRR
- Developed Concepts for Treatment Methods
- Analyzed Process and Secondary Waste Stream

AI SNF Form Development - Small Scale
- Developed Resistance Furnace for M-D of Full Scale MTR
- Demonstrated M-D with Full Scale Dummy MTR
- Designed Induction Furnace for Full Scale MTR

AI SNF Form Development Volume Reduction as f (Process Options)

<table>
<thead>
<tr>
<th>Additions</th>
<th>Uranium</th>
<th>Uranium and Aluminum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alloy Wt%</td>
<td>2-20%</td>
<td>15%</td>
</tr>
<tr>
<td># of Canisters</td>
<td>253</td>
<td>596</td>
</tr>
<tr>
<td>20% Dilution</td>
<td>272</td>
<td>1254</td>
</tr>
<tr>
<td>5% Dilution</td>
<td>5%</td>
<td>10%</td>
</tr>
</tbody>
</table>

FY98
- Ternary Effects
- Intermediate Processing
- Surrogate Development
- Isotopic Studies
- Form DevelopmentAgregar Additions
- AI SNF Form Assessment

FY97
- Off-Gas System Development
- Lab Demonstration (Surrogates)
- Validation Bases

- Facility Development
- MTR Fabrication
- Process Simplification Device

- AI SNF Form Screening
- Passive, Corrosion & Disintegration

Melt-Dilute Waste Form Accomplishments

AI SNF Form Development - Off-Gas System
- Fusion Product Release
- Initial Validation Studies
- Off-Gas System Concept
- Process Waste Stream

AI SNF Form Development - Small Scale Validation and Performance
- Facility Development
- MTR Fabrication
- Process Simplification Device

AI SNF Form Development - Assessment
- AI SNF Form Screening
- Passive, Corrosion & Disintegration
Aluminum SNF Form Testing

Aluminum SNF Form Testing in Aqueous Environments

- Glass Waste Form => Release of Radionuclides
 => Tests in Aqueous Environment
- Commercial SNF (UO2) => Release of Radionuclides
 => Dissolution Tests
 "Homogenous Dissolution"
- HEU AI SNF
 - Release of Radionuclides
 - Materials Reconfiguration
 "Heterogeneous Dissolution"

Test Methods for AI SNF Form

- Release of Radionuclides:
 - Dissolution Tests => Flow Tests and Drip Tests
 - Corrosion Tests => Anodic Polarization, Cyclic Polarization, Electrochemical Noise
 - Static Dissolution Tests and Vapor Phase Tests

Dissolution Characteristics - Preliminary Data

- Microstructure Dependent
- Preferential Dissolution: Al > UA13 > UA14

Al SNF Form Characteristics

SNF Form Stability

- Direct Disposal
- Melt-Dilute

- Irradiated MTR: Al + UA13+UA14
- Al + UA14

- Corrosion Resistance of Al: UA14 > Al+UA13+UA14

- M-D SNF Form: Tailored Microstructure

AI SNF Form Characteristics - Criticality

- Poisons Necessary for Direct Disposal
- Poisons If Necessary in Melt-Dilute
- Efficacy of Boron (Degradation Rate)

AI SNF Form Stability - Radionuclide Release

- D-D
 - Fission Gases in Pores
 - Fission & Activation Products Partitioning Between UA13, UA14 and AI

- M-D
 - No Fission Gases
 - Fission & Activation Products Partitioned to UA1s

AI SNF Form - Proliferation Resistance

- Isotopic Dilution <20%
- Liquid Phase Processing
- No Ready Separation of U235