U.S. DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT

NUCLEAR WASTE TECHNICAL REVIEW BOARD FULL BOARD MEETING

SUBJECT: PROJECT IMPLEMENTATION PROCESS:

PERFORMANCE ASSESSMENT

PRESENTER: DR. ABRAHAM VAN LUIK

PRESENTER'S TITLE

AND ORGANIZATION: TEAM LEADER, TECHNICAL SYNTHESIS TEAM

LAS VEGAS, NEVADA

TELEPHONE NUMBER: (702) 794-1424

AUSTIN, TEXAS APRIL 30 - MAY 1, 1996

YUCCA MOUNTAIN INTEGRATED PROJECT MISSION

Role of Performance Assessment

- Performance assessment integrates scientific, engineering/design and environment information
- One form this integration takes is total system performance assessment (TSPA)
- A TSPA can be used to support decision making, to evaluate regulatory compliance, to optimize the overall system, and to determine where more information may be useful

Planning for TSPA-VA

- The planning for TSPA-VA, illustrated in the morning talk, shows that structural and interactive processes are being defined
- Past experience of using unstructured information exchanges suggested that more structured interactions were needed
- Completion of process-level models and the need to abstract from them forces close and structured cooperation

Experience in the Implementation of PA Recommendations

- Recommendations for site and design were outlined in each of the recent TSPAs (1991, 1993 and 1995)
- TSPA 1995 listed recommendations for more work to be done in site characterization and engineering/design
- TSPA 1995 recommendations to a large extent have been factored into the planning discussed in the first presentation
- Focus here is on TSPA 1993 and the informal way its key recommendations were handled (changes in TSPA 1995 modeling were a direct result)

TSPA 1993 Recommendations and Responses

- The TSPA-93 recommendations were divided into three categories of interest to the site and engineering/design functions:
 - Site data
 - Waste-package data and near-field processes
 - Repository and waste-package design
- Near-field processes are addressed by both the site and engineering functions

TSPA 1993 Site Data Recommendations

- Search for evidence for flowing fractures at present and in the past
 - Current effort with dating of samples from the ESF also addresses second recommendation: isotopic dating of fracture coatings and fillings
- Gas flow (bulk-permeability data are useful for characterizing fractures for water-flow and hydrothermal modeling)
 - New air-permeability data have been obtained

TSPA 1993 Site Data Recommendations

- Characterization of percolation flux (now and for future climates)
 - A lot of new work: estimates of surface infiltration, climate modeling progress, calcite-opal work to constrain past/present percolation
- Amount of dilution in the saturated zone (now and for future climates)
 - New data in this area is expected, and there is additional modeling work

TSPA 1993 Site Data Recommendations

- Potentially important items were also listed:
 - Colloids**
 - Fracture-matrix coupling
 - Persistence of flow paths through time**
 - Scaling of properties and heterogeneity*
 - Cross-correlations among parameters*
 - Hydraulic properties of unsaturated fractures, rock matrix, and faults*

^{*} indicates areas where there has been progress

^{**} indicates areas with current activity

- Integrated testing recommended to aid development of near-field process models
- Testing and modeling is either planned or in progress

- Container corrosion, including the transition between non-aqueous and aqueous corrosion and galvanic effects
 - Improved models of these processes were developed for TSPA-95
 - Laboratory experiments are either planned or in progress
- Waste-package chemistry and how it affects solubilities and fuel-alteration rates
 - Being addressed as part of process-level model development

- Repository performance could be improved if
 - Container failure could be spread out over time
 - Moisture contact could be reduced
 - Reducing conditions could be maintained within waste packages
 - » These ideas were not new, and the design group has at least considered such concepts

- Recommendations in the seismic-effects follow-on to TSPA-93 (see "Focus '95" conference proceedings):
 - Total system performance not likely to be seriously degraded by seismic effects
 - Repository performance might be improved by backfilling drifts
 - » There is a systems study in progress to evaluate EBS enhancements
 - Amount of rockfall and size of fallen rocks from seismic and thermal-mechanical stresses
 - » Work in progress

- Recommendations (Continued)
 - Longevity of effective roof support and the threshold value of seismic acceleration that could cause significant damage to drifts
 - » Work in progress
 - Changes in fracture and fault apertures due to seismic stresses and on secondary faulting in the region
 - » Work in progress
 - Models to predict drift stability, effects of large-scale thermal expansion, container puncture by rockfall, effects of seismic shaking on containers and on hydrology
 - » There has been additional work on damage to containers from rockfall and seismic shaking

Summary of Experience with Less Structured TSPA Recommendations

 Experience suggested a more structured cooperative relationship is needed; it is being planned and implemented

Guidance Clarified PA Needs for Process-Level Models

- Two preliminary site program process models were reviewed by PA thus far
- Review of first model identified need to specify PA needs and expectations
- A content guide was written and distributed
- Positive feedback from site and engineering program management and modelers
- Joint, structured abstraction program is planned

Expected Outcome of Structured Cooperation in Modeling

- A TSPA-VA that reflects what is in site and engineering process-level models
- A TSPA-VA that is understood and supported by the site and engineering function's management and Principal Investigators

Coordinating and Integrating PA, Engineering, and Site Modeling Work

- Addressing uncertainties and showing applicability of the models is largely a process-level modeler responsibility
- Addressing system-level sensitivities and uncertainties is largely a PA responsibility
- Joint Abstraction Working Groups will ensure that responsibilities are properly shared and addressed in a coordinated fashion