Characterizing Flow and Transport in highly heterogeneous media - A theoretical study

Yvonne Tsang
Lawrence Berkeley Laboratory

NWTRB Hydrogeology & Geochemistry Panel meeting
June 26-27, 1995, San Francisco
Talk Focus

- Strongly heterogeneous media -> spatial variability of point measurements
 - manifested in flow channeling and fast paths
- How uncertainties inherent in site characterization will influence performance predictions
- How site specific data should be assimilated into performance assessment process
 - reduce uncertainty of prediction
 - finite amount of data
- A site specific example
Outline

- Stochastic Continuum Model of a fracture medium
 - Site specific hydrological data from SKB's Aspo Hard Rock Laboratory

- Transport Predictions Sensitive to the Structures of Heterogeneity
 - Sensitivity depends on choice of predictive quantity/performance measure

- Calculations to Quantify Uncertainties in Transport from Single Canister Sources

- Fickian Limit Not Reached
 - Implication to inference from small scale testing to large scale prediction

- Concluding Remarks
SKI SITE-94 Project

- Part of Swedish Nuclear Power Inspectorate's strategy for developing integrated Performance Assessment as a licensing tool for nuclear waste repositories.
 - Alternative geological, hydrological, transport, geochemical conceptual models
 - Dress rehearsal: from site characterization to performance assessment

- Based on surface and borehole data (1986-1990) from SKB's Aspo Hard Rock Laboratory
 - Geological
 - geophysical
 - hydrological
 - geochemical
Figure 3.15 Location map of boreholes on Åspö
Figure 12. Map of extensive fractures which are identified in boreholes by means of fracture logs and borehole radar measurements. A 3D model is presented below in Figures 13-15.
Class 0

\[\gamma(h) \times 10^{-21} \]

\[\sigma^2 = 1.1 \times 10^{-19} \]

Class 1

\[\gamma(h) \times 10^{-21} \]

\[\sigma^2 = 1.95 \times 10^{-19} \]

Class 2

\[\gamma(h) \times 10^{-18} \]

\[\sigma^2 = 2.15 \times 10^{-17} \]
Stochastic Continuum Hydrological Model

◆ Geostatistical generation of 3D hydraulic conductivity field conditioned on “point” data of injection test in 3m packed sections
 – Variograms of “point” data display only short range correlation
 – Clustered nature of data cannot discriminate presence or absence of long range correlation structure

◆ Option of incorporating geological information of major fracture zones
 – Very transmissive structures with long correlation lengths
 – Used as “soft” data

◆ Single continuum representation of both the fractures and the rock matrix

◆ Flow results calibrated by interference pumping test

◆ Stochastic transport calculations by particle tracking
Conditioned Sequential Indicator Simulation

- Non-parametric technique (Gomez-Hernandez) - no particular distribution model is assumed; data are divided into classes bounded by indicators.
- Indicator covariance defined in terms of joint probability of two values in space.
- Classes of extreme values may have covariance different from the rest.
- If the extreme values of hydraulic conductivity are given a large correlation length, the generated field can have long range connectivity for only the extreme values.
- Allows concentration of large conductivities in specified planes of orientations - fractures in the stochastic continuum representation.
Stochastic Continuum Model

Fracture Network Model
Pumping KAS 02, 03, 06 and HAS 13, All Sections

- Packed Sections
- Good Hydraulic Contacts

Distance (m) From Pumped to Observed Section

LPT2 All Hydraulic Communication

- Observed Sections
- All Hydr. Comm.

Distance (m) from Pumped to Observed Section

Pumping All Sections, KAS 02, 03, 06 and HAS 13

- Packed Sections
- Good Hydraulic Contacts

Distance (m) From Pumped to Observed Section
Appropriate Performance Measure
(What are the feasible predictive quantities for management decisions?)

Solute breakthrough in small areas A_{ij} has strong spatial dependence (Flow Channeling)
Remarks on Tracer Breakthrough Results

- Discrimination of fracture-dominated systems versus heterogeneous continuum requires extensive measurements.

- Spatially integrated solute arrivals much less sensitive to alternative heterogeneous systems - similar order of magnitude in solute arrival and concentration.

- Implication on choice of performance measure - quantities to be predicted:
 - "point quantities" - large variations
 - spatially integrated parameter, more stable, more commensurate with our ignorance of the heterogeneous medium.
Tracer breakthrough from single canister sources

- Quantify uncertainties due to spatial variability
- Repeat calculations for hundreds of randomly selected sites of tracer source
- Obtain transport parameters for each breakthrough curve (v and D)
- Distributions of transport parameters are measures of the uncertainty
Fit of 3D Breakthrough Curves by 1D Advective-Dispersive Equation Solution
Distribution of Fitted U(m/yr, left graphs) and D (m²/yr, right graphs), in Logarithm Scale

Reference Case, dip angle 80°
Distribution of Fitted U(m/yr, left graphs) and D (m²/yr, right graphs), in Logarithm Scale

- Isotropic case with only short correlation structure
<table>
<thead>
<tr>
<th>Nomenclature (°)</th>
<th>no. of peaks fitted</th>
<th>$\bar{V} \pm \sigma$ (m/yr)</th>
<th>$\bar{D} \pm \sigma$ (m*m/yr)</th>
<th>no. of peaks fitted</th>
<th>$\bar{V} \pm \sigma$ (m/yr)</th>
<th>$\bar{D} \pm \sigma$ (m*m/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF-DIP90</td>
<td>501</td>
<td>0.045±0.061</td>
<td>5.9±44.</td>
<td>680</td>
<td>0.041±0.058</td>
<td>5.0±43.</td>
</tr>
<tr>
<td>REF-DIP80-1</td>
<td>461</td>
<td>0.035±0.039</td>
<td>2.3±3.6</td>
<td>587</td>
<td>0.033±0.038</td>
<td>3.0±29.</td>
</tr>
<tr>
<td>REF-DIP80-2</td>
<td>556</td>
<td>0.035±0.041</td>
<td>4.7±35.</td>
<td>723</td>
<td>0.032±0.039</td>
<td>3.5±30.</td>
</tr>
<tr>
<td>REF-DIP80-3</td>
<td>465</td>
<td>0.036±0.036</td>
<td>4.4±33.</td>
<td>620</td>
<td>0.034±0.038</td>
<td>3.0±27.</td>
</tr>
<tr>
<td>REF-DIP80-4</td>
<td>458</td>
<td>0.040±0.036</td>
<td>4.4±22.</td>
<td>555</td>
<td>0.038±0.035</td>
<td>2.9±12.</td>
</tr>
<tr>
<td>REF-ISO-1</td>
<td>451</td>
<td>0.021±0.010</td>
<td>0.99±1.1</td>
<td>529</td>
<td>0.020±0.01</td>
<td>0.82±1.1</td>
</tr>
<tr>
<td>REF-ISO-2</td>
<td>519</td>
<td>0.024±0.013</td>
<td>1.4±16.</td>
<td>616</td>
<td>0.023±0.014</td>
<td>1.1±1.4</td>
</tr>
<tr>
<td>REF-DIP40-1</td>
<td>366</td>
<td>0.015±0.0058</td>
<td>0.55±0.66</td>
<td>427</td>
<td>0.014±0.0062</td>
<td>0.43±0.56</td>
</tr>
</tbody>
</table>
Inference from small scale measurement to large scale predictions

- Compute tracer breakthrough curves from single canister sources for transport distances of 100m, 200m..... up to 600m
- Fitted transport parameters v and D as function of transport distance
Combine full recovery canisters into a single breakthrough curve; one fit at each distance.
Summary

- **Stochastic continuum model**
 - Non-parametric sequential indicator simulation conditioned to data
 - Long range correlation structures to account for fractures
 - Different heterogeneity structures, all consistent with data, to evaluate model uncertainty

- **Choice of Performance Measure**
 - Large uncertainty if "point" quantities are chosen as predictive quantity/performance measure - probably will never have enough data
 - Spatially integrated solute arrivals less sensitive to heterogeneity structures - more commensurate with our ignorance of the heterogeneous medium
Transport from Single Canister Sources Releases
- Fit of 3D flow and transport results by 1D advective-dispersive equation
- v and D for hundreds of calculations to quantify associated variability

Demonstrate an approach to go from site characterization data to performance assessment
- Fickian limit not reached - cannot infer from small scale measurement to large scale predictions

Caution in using the Predictions - inherent ignorance of a strongly heterogeneous system
- spatial variability
- model uncertainty