The Virtues of Laboratory-Scale vs Field-Scale Experiments

presented to

NWTRB

by

R.T. Green

Center for Nuclear Waste Regulatory Analyses
San Antonio, TX

sponsored by

Nuclear Regulatory Commission

June 26, 1995
San Francisco, CA
HLW Repository Thermal Regime Conceptual Model

- Heating Period - Moisture Transported as Advection Driven Water Vapor
- Transitional Period - Moisture Transported as Both Water Vapor and Liquid
- Cooling Period - Moisture Transported as Capillarity Driven Liquid
WATER VAPOR FLOW REGIMES

Buoyancy Driven
Low Heat Load
High Bulk Permeability

Advection Driven
High Heat Load
Low Bulk Permeability
Figure 4-48. Gas pressure measurement from Lawrence Livermore National Laboratory G-tunnel heater experiment for (a) P1, (b) P2 (after Ramirez, 1991)
Figure 5-6. Numerically simulated gas flow velocity vectors of the Fran Ridge Large Block Test at 92.5 days at: (a) 50-percent heating rate (750 W), and (b) 100-percent heating rate (1,500 W)
Summary Observations

- Conceptual models supported by laboratory-scale experimentation may not be valid for larger scales.
- Physical mechanisms present at full scale may not be reproducible at laboratory scale:
 - multiple matrix/fracture interactions
 - large-scale heterogeneities
 - perched water conditions
- Property values may be spatially dependent.
- Laboratory-scale experiment boundary conditions may be prohibitive.