Presentation to the
Nuclear Waste Technical Review Board
Panel on the Engineered Barrier System

Waste Acceptance Requirements/
DOE Interface

Steven E. Gomberg, Systems Engineering Division
Office of Civilian Radioactive Waste Management
June 6, 1995
Purpose

- To provide a brief overview of the Civilian Radioactive Waste Management System
- To identify key regulatory requirements affecting waste forms
- To describe OCRWM Waste Acceptance System Requirements
- To provide an overview of the interface between the Office of Civilian Radioactive Waste Management (RW) and Environmental Management (EM)
OCRWM Program Overview

Yucca Mountain Site Characterization
• Technical Site Suitability determination in 1998
• Initial License Application submittal in 2001
• Begin repository operations in 2010

Waste Acceptance Storage and Transportation
• Deployment of MultiPurpose Canisters to utilities in 1998
• No Monitored Retrievable Storage facility in planning basis

Second Repository Investigations
• No activities being conducted on second repository
• DOE required to report to Congress on need after 2007
Statutory and Regulatory Authority

- Nuclear Waste Policy Act, as amended
 - Statute defines for development of geologic repositories
 - May include other wastes as determined by the Nuclear Regulatory Commission that require permanent isolation
 - Allows DOE to characterize only Yucca Mountain for suitability
 - Limits waste to be placed in first repository to 70,000 MTHM
 - Requires evaluation on need for second repository by 2007

- Disposal of HLW in Geologic Repositories (10 CFR 60)
 - Defines licensing requirements, site criteria, QA requirements
 - Prescribes waste package performance and design criteria
 - Establishes Engineered Barrier System performance objective
 - Provides repository design requirements

- Environmental Radiation Protection Standard* (40 CFR 191)
 - Establishes allowable releases to accessible environment

* Standard remanded in 1987
Key Waste Form Considerations

- **Waste Form Requirements**
 - Waste form must meet criteria defined in 10 CFR 60.135
 - Solidification/Consolidation/Noncombustible
 - Waste form must remain subcritical for long timeframes
 - Plan to exclude RCRA mixed wastes from first repository

- **Waste Package Design**
 - Specific package design criteria must be met
 - No explosive/pyrophoric/chemically reactive materials
 - No free liquids
 - Handling
 - Unique Identification
 - Waste interactions must be evaluated
 - Solubility/redox/hydriding/radiolysis/corrosion/...
Waste Form Performance Allocation

• Waste Form is key physical interface
 – Characteristics help define design of waste, transportation, and repository surface/subsurface facilities and equipment

• Waste Form Performance Allocation as part of EBS and Total System Performance Objectives
 – Substantially complete containment of Waste Packages
 – Not less than 300 years nor more than 1,000 years
 – Release rate after the containment period
 – Can not exceed one part in 100,000 per year of the radionuclide inventory present at 1,000 years after closure
 – Remanded standard sets allowable radionuclide releases to accessible environment for each radionuclide for 10,000 years

• Long-term criticality control must be maintained
OCRWM Requirements in Waste Acceptance System Requirements Document

- Interface/Contractual Requirements
 - Interface Requirements
 - Contractual Requirements
 - Documentation Requirements
 - Training Requirements
 - QA Requirements

- Spent Nuclear Fuel Requirements
 - Waste form Criteria
 - Commercial SNF
 - DOE SNF Specifications (Future Development)

- High-Level Waste Requirements
 - Waste form Criteria
 - Canistered BSi HLW Glass
 - Other Waste Forms (Future Development)
CRWMS Waste Forms

• Waste management system currently planning to dispose of commercial SNF and canistered HLW glass in the first repository
 - Significant data exists for these waste forms

• Evaluating applicability of other waste forms for potential disposal in a geologic repository
 - DOE spent fuel (production reactor SNF, research reactor SNF, naval reactor SNF, etc)
 - surplus weapons materials
 - plutonium residues
 - greater-than-class-C waste
Commercial & DOE SNF Fuel Allocation Comparison

<table>
<thead>
<tr>
<th>Commercial SNF (Projected-2030)</th>
<th>DOE (Defense) SNF (Projected-2030)</th>
</tr>
</thead>
<tbody>
<tr>
<td>85,700 MTHM</td>
<td>2,750 MTHM</td>
</tr>
</tbody>
</table>

First Repository Planning
(Total Allocation: 70,000 MTU)
(Commercial SNF: 63,000 MTU)
(Defense SNF/HLW: 7,000 MTU)

June 6, 1995
Disposition of DOE Spent Nuclear

- **Proposed ultimate disposition strategy**
 - Provide safe, interim storage and management of SNF at specified locations until ultimate disposition
 - All DOE-owned SNF will be stabilized, characterized, and prepared for repository disposal

- **Reassessment of defense waste allocation**
 - Some or all DOE-owned SNF in first repository
 - Quantity of SNF/HLW will not exceed 10% of capacity

- **Considerations for Acceptance**
 - Payment of Fees
 - Compliance with repository waste acceptance criteria
 - Appropriate NEPA review
 - Minimize impact on CRWMS schedule
Qualification of Waste Forms

- **Characterization**
 - Physical, Chemical, Radiological Properties
 - Characterization Testing

- **Performance Assessment**
 - Waste Form Performance under Repository Conditions
 - EBS and Total System Performance
 - Criticality Calculations
 - Validation Testing

- **Design**
 - Engineered Barrier System Design
 - Surface and Subsurface Facility Design

- **NEPA/Environmental Assessment**

- **Licensing/Safety Analysis Report**

- **Quality Assurance**
Evaluating DOE SNF Disposition

• Evaluate DOE SNF for repository disposal
 – Identify key issues affecting the ability to accept, transport, and dispose of DOE SNF
 – Technical, Regulatory, and Programmatic
 – Recommend data needs and activities to allow integration of DOE SNF into CRWMS

• Provide early guidance to EM on acceptability of waste forms for disposal
 – Direct disposal
 – Conditioning or treatment
 – Processing
DOE-Owned Spent Nuclear Fuel Steering Group

• Coordination among Programs facilitated by DOE SNF Steering Group
 - Established July 29, 1994
 - Jointly authorized by Director, Office Of Civilian Radioactive Waste Management (RW) and Assistant Secretary For Environmental Management (EM)

• Responsible for:
 - Identifying issues regarding waste acceptance through emplacement of DOE SNF in a geological repository
 - Recommending tasks and activities for resolution of DOE SNF disposal issues
DOE-Owned Spent Nuclear Fuel Steering Group (continued)

- DOE SNF Steering Group Organization
 - RW
 - EM
 - Chairs and Members
 - Task Teams

- Task Team Organization
 - Program Team
 - Waste Acceptance and Transportation Team
 - Repository Team
Key Issues by Task Team

- Program Task Team
 - Physical Characteristics and Quantity
 - Physical Integrity
 - RCRA Determination
 - NEPA Coordination
 - CRWMS Schedule Impact and Consequences
 - Quality Assurance
 - Future Materials for Repository Disposal
Key Issues by Task Team

- Waste Acceptance and Transportation Team
 - Interagency Agreement / Fees
 - Safeguards and Accounting
 - Management of Classified Information
 - MTHM Equivalence
 - Transportation Design and Operations
 - Canisterization and Standardization
Key Issues by Task Team

• Repository Team
 – Waste Form Constraints
 – Waste Characteristics for Performance Assessment
 – Waste Package and Equipment Design Considerations
 – Corrosion Product Control
 – Radiation Shielding
 – Decay Heat Removal
 – Material Incompatibilities
 – Long-term Criticality Control
Summary

EM-RW have established a close working relationship to develop, control, and resolve waste acceptance requirements and issues.