THERMAL MANAGEMENT OBJECTIVE

- Evaluate system operational alternatives with potential to:
 - Increase thermal flexibility
 - Increase operational efficiency
- Provide input for overall thermal strategy development
INTEGRATED THERMAL MANAGEMENT ACROSS SYSTEM ELEMENTS

UTILITIES

Waste Selection

REDUCE TOTAL HEAT LOAD
REPOSITORY OPERATIONAL OPTIONS

STORAGE
Aging

REPOSITORY(s)

Emplacement Pre-closure operations

November 17, 1994
Effect of Selection Strategies

- Delay pickup of hottest packages
 - provide maximum on-site aging of fuel
 - examples illustrate bounds (OFF, YFF5)

- Approach must recognize institutional constraints to pickup strategies
Example of Effect in a Simple Model
OFF Pickup

MPC RFP assembly heat limit for transportation (730 watts)

10930 PWR assemblies over limit

Assembly heat at pickup (watts)
Example of Effect in a Simple Model
YFF(>5 yrs) Pickup

Number of assemblies

MPC RFP
assembly
transportation
heat limit
(730 watts)

38074 PWR assemblies exceed limit most greatly exceed it

Assembly heat at pickup (watts)

November 17, 1994
Example of Effect in a Simple Model
YFF(>10 yrs) Pickup

MPC RFP
assembly transportation
heat limit
(730 watts)

33659 PWR assemblies exceed limit
Further Evaluation In Simple Model
Delay Emplacement of Hottest Packages

- MPC only
- OFF pickup
- No MRS
 (ship direct)
- Casks derated
 as required for
 shipment

Maximum Allowed Heat Output at Emplacement
(kilowatts per Multi-Purpose Canister)

Average Storage (years)

Number of Cask-years
(of storage at repository)

November 17, 1994
Waste Package Spacing Example

- Equalize heat-load/unit-length among all packages that are spaced in the interior
Potential Effect Of Removing Water Vapor During Ventilation -- Latent Heat Removal

- Turnover air in waste-drifts through ventilation
 - remove water vapor flowing from rock

- Use negative pressure in emplacement-drifts to direct vapor flow from rock
Factors Can Reduce Repository Horizon Heat-loads Increasing Emplacement Flexibility

- Possible Sources of Design Margin
 - Avoid picking up hotter than OFF spent fuel (~1.25)
 - Age hottest fuel prior to emplacement (~1.12)
 - Higher thermal load near edge of repository (~1.12)
 - Remove warm moist air during operations (~1.05-1.25)

- Combined factors allow more flexible design

\[(1.25 \times 1.12) \times (1.12 \times 1.25) \approx 2\]
SUMMARY

- Options are applicable for all potential repository thermal loads
- Preliminary analyses suggest overall strategy may benefit from combination of
 - Waste acceptance from utilities
 - Aging hotter SNF prior to emplacement
 - Emplacement spacing
 - Ventilation
- Need to be careful; these are preliminary scoping studies
- Thermal management options must take into account institutional framework