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OUTLINE

Prognosis for cladding life
Mechanisms for cladding degradation

Creep rupture by diffusion-controlled cavity growth
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UNCERTAINTIES IN CLADDING LIFE

Cladding life may be consumed before disposal

- Cladding is highly variable

High burnups may damage cladding

- - Characterizing cladding is expensive and time-consuming
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REASONS TO EXPECT
SIGNIFICANT CLADDING PERFORMANCE

More than 99% of fuel rods are intact at discharge

- Zircaloy is corrosion resistant

Failures are usually microscopic
Cladding is potentially important as a barrier to release

Cladding serves as redundant barrier for containment
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MECHANISMS FOR CLADDING DEGRADATION

I2
Fuel-side Stress Corrosion Cracking Hydride Reorientation
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Delayed Hydride Cracking Axial Hydride Redistribution
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MECHANISMS FOR CLADDING DEGRADATION

(CONTINUED)

T e

Creep Rupture Strain Rate Embrittlement
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Irradiation Embrittlement Oxidation and Aqueous Corrosion
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CREEP RUPTURE MECHANISMS

Ductile transgranular fracture

- Triple-point cracking

Power-law cavity growth

Diffusion-controlled cavity growth (DCCQG)
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WHAT IS THE MOST IMPORTANT
DEGRADATION MODE?

- NRC and PNL independently concluded that DCCG is the

most important mode for dry storage

- Conditions for dry storage and disposal are similar

DCCG is most important mode for disposal
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SCHEMATIC OF CAVITY GROWTH IN DCCG
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ACCUMULATED DAMAGE
-
D(fy = | —_
( J 7
I=time

D(f) = damage at time ¢
L(t) = lifetime under conditions at time t
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PREDICTED LIFETIME

_ NAKT
oD Q2 om

n = geometric/diffusional constant

A= cavity spacing

k = Boltzmann’s constant

T = temperature

o = effective grain boundary thickness
D_, = grain boundary diffusivity

Q = atomic volume ’

o = hoop stress

m = microstructural constant
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DATA USED IN MODEL

n = 0.00226 (from NRC data, corrected as noted below)
A =10um
k =1.3807 x 102 JK
Tlo= 643 K/69.7 MPa
O = 9.69 x 1'0'10 m
D = 59 x 106 exp[(-131 kJ/mol)/RT] m?/s
Q = 2.334 x 102 m3 (corrected)
o = 75° (dihedral half-angle at edge of cap) (corrected)
v = 2J/m?(surface energy) (no value given by NRC)
m = 0.165 (for grain aspectratio9:3: 1
(axial : circumferential : radial))
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EFFECT OF MICROSTRUCTURE AND STRESS

In fuel, most grain boundaries are oriented to resist DCCG

Stress is o in circumferential direction, /2 in axial
direction, 0 in radial direction

Represent grain as an ellipsoid, calculate average normal
traction on surface

Using realistic representation of microstructure and
stress avoids excessive conservatism
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MICROSTRUCTURE AND STRESS

adial




CLADDING LIFE, yr

PREDICTED CLADDING LIFE
UNDER CONSTANT TEMPERATURE
AND STRESS
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DAMAGE ACCUMULATION IN STORAGE AND
DISPOSAL

Sample Calculation for Following Conditions:
PWR Fuel With 40 GWd/MTU Burnup

- Stored in Fuel Pool for 5 Years

- Stored in CASTOR V/21 for 5 Years

Disposal Without Backfill at 80 kW/acre,
21 Assemblies per Package

3-10TRB14.125.NWTRB/3-10-84



DAMAGE ACCUMULATION IN STORAGE AND
DISPOSAL
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CONCLUSIONS

- Cladding can potentially provide significant

performance
Obtaining cladding credit may be difficult

Cladding can survive calculated temperatures for
disposal for 10000 years
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FUTURE STUDIES

Determine effects of

« Extendedburnup

 Using other types of dry storage devices
 Differentthermalloadings

« Backfilland resulting thermal spike
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