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OUTLINE 


Prognosis for cladding life 

Mechanisms for cladding degradation 

Creep rupture by diffusion-controlled cavity growth 
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UNCERTAINTIES IN CLADDING LIFE 

Cladding life may be consumed before disposal 

Cladding is highly variable 

High burnups may damage cladding 

Characterizing cladding is expensive and time-consuming 
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REASONS TO EXPECT 

SIGNIFICANT CLADDING PERFORMANCE 


More than 99% of fuel rods are intact at discharge 

Zircaloy is corrosion resistant 

Failures are usually microscopic 

Cladding is potentially important as a barrier to release 

Cladding serves as redundant barrier for containment 
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MECHANISMS FOR CLADDING DEGRADATION 
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Fuel-side Stress Corrosion Cracking Hydride Reorientation 
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Delayed Hydride Cracking Axial Hydride Redistribution 
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MECHANISMS FOR CLADDING DEGRADATION 

(CONTINUED) 


Creep Rupture Strain Rate Embrittlement 

n 

Irradiation Embrittlement Oxidation and Aqueous Corrosion 
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CREEP RUPTURE MECHANISMS 


Ductile transgranular fracture 

Triple-point cracking 

Power-law cavity growth 

Diffusion-controlled cavity growth (DCCG) 
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WHAT IS THE MOST IMPORTANT 

DEGRADATION MODE? 


NRC and PNL independently concluded that DCCG is the 
most important mode for dry storage 

Conditions for dry storage and disposal are similar 

DCCG is most important mode for disposal 
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SCHEMATIC OF CAVITY GROWTH IN DCCG 
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ACCUMULATED DAMAGE 


D(t)= L(I:) 
0 

t = time 

D(t) = damage at time t 

L(~) = lifetime under conditions at time 
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PREDICTED LIFETIM 

n;L3kT

L 

6 D gb.CZ (~ m 


n = geometric/diffusional constant 

;~= cavity spacing 
k = Boltzmann's constant 

T= temperature 

8 = effective grain boundary thickness 

Dg b = grain boundary diffusivity 

= atomic volume 

= hoop stress 

m = microstructural constant 
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DATA USED IN MODEL 


n 	 = 0.00226 (from NRC data, corrected as noted below) 

= 10pm 
k 	 = 1.3807 x 10 .23 J/K 

77G= 643 K/69.7 MPa 
8 = 9.69 x 104o m 

Dy b= 5.9 x 10 ~ exp[(-131 kJ/mol)/RTJ m2/s 

= 2.334 x 10 .29 m 3 (corrected) 

(X = 75 ° (dihedral half-angle at edge of cap) (corrected) 

= 2 J/m 2 (surface energy) (no value given by NRC) 7 
m = 0.165 (for grain aspect ratio 9 : 3 : 1 

(axial: circumferent ial :radial))  
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EFFECT OF MICROSTRUCTURE AND STRESS 


In fuel, most grain boundaries are oriented to resist DCCG 

Stress is G in circumferential direction, G/2 in axial 

direction, 0 in radial direction 


Represent grain as an ellipsoid, calculate average normal 
traction on surface 

Using realistic representation of microstructure and 

stress avoids excessive conservatism 
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MICROSTRUCTURE AND STRESS 
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PREDICTED CLADDING LIFE 

UNDER CONSTANT TEMPERATURE 


ANDSTRESS 
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DAMAGE ACCUMULATION IN STORAGE AND 

DISPOSAL 


Sample Calculation for Following Conditions: 

PWR Fuel With 40 GWd/MTU Burnup 

• 	 Stored in Fuel Pool for 5 Years 

Stored in CASTOR V/21 for 5 Years 

Disposal Without Backfill at 80 kW/acre, 
21 Assemblies per Package 
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DAMAGE ACCUMULATION IN STORAGE AND 

DISPOSAL 
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CONCLUSIONS 


Cladding can potentially provide significant 
performance 

Obtaining cladding credit may be difficult 

Cladding can survive calculated temperatures for 
disposal for 10000 years 

3-10TRB16.125.NWTRB/3-10-94 



FUTURE STUDIES 


Determine effects of 

Extended burnup 

Using other types of dry storage devices 

Different thermal Ioadings 

Backfill and resulting thermal spike 
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