Nuclear Waste Technical Review Board
Engineered Barrier System Panel Meeting

Hanford Spent Nuclear Fuel Project

Jerry Ethridge, Ph.D.
Spent Fuel Technology Program Office
Pacific Northwest Laboratories
(509) 373-6677

Richland, Washington
June 15, 1994
Hanford Spent Nuclear Fuel Project

Agenda

- DOE / WHC lines of authority
- Status
- Strategic objective for K Basin fuel
- Key milestones
Westinghouse Hanford Company
Lines of Authority

President
Westinghouse
Hanford Company

Tank Waste Remediation System
Spent Nuclear Fuel Project
Transition Projects
Waste, Analytical & Environmental Services

K Basins
Project Baseline Control
Engineering & Systems Integration
Reg. Integration & Public Involvement
Applied Technology

Support Projects
Procurement
Safety
Quality Control
Human Resources
Hanford Spent Nuclear Fuel Project

Number one priority is protecting the Columbia River

- No discharge is acceptable
- Isolate fuel from the environment
- Put in safe storage away from the river
Defense Nuclear Facilities Safety Board
Recommendation 94-1

(7) “That the program be accelerated to place the deteriorating reactor fuel in the K-East Basin at the Hanford site in a stable configuration for interim storage until an option for ultimate disposition is chosen. This program needs to be directed towards storage methods that will minimize further deterioration.”
Hanford Spent Nuclear Fuel Project

Action needed to solve urgent problems

• Leak response plans
 - Earthquake vulnerability
• Aging facilities / worker safety
• Sludge/fuel characterization
• Sludge/fuel packaging
Hanford Spent Nuclear Fuel Project

Many pieces to the puzzle

- Nowhere to put the fuel
- Don’t know how to store it safely
- Don’t want to trade today’s problems for a future one
- Long-term solutions have to withstand the test of time — 30 to 50 year storage
Hanford Spent Nuclear Fuel Project

Crucial decisions must be made

- Fuel and sludge encapsulation
- Expedited removal
- Fuel stabilization facility
 - Location
 - Cost and schedule
- Long-term storage
 - Programmatic EIS
 - Hanford EIS
Hanford Spent Nuclear Fuel Project Status
Location of Hanford Spent Nuclear Fuels

100-KW & KE

100-D & DR

100-H

100-N

100-B & C

Spent Nuclear Areas

200 Areas

T Plant

Low-Level Burial Grounds

PUREX

Columbia River

Yakima River

FFTFT

300 Area

Richland

Pasco

Kennewick

0 4 8 kilometers

0 2 4 6 8 miles
Irradiated Fuel Inventory at Hanford

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Amount</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>N Reactor</td>
<td>2095.8 MTU</td>
<td>K Basins, PUREX</td>
</tr>
<tr>
<td>Single-pass reactor</td>
<td>3.4 MTU</td>
<td>PUREX, K Basins</td>
</tr>
<tr>
<td>PWR Core II</td>
<td>15.7 MTU</td>
<td>T Plant</td>
</tr>
<tr>
<td>FFTF</td>
<td>11.0 MTU</td>
<td>400 Area</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>< 0.4 MTU</td>
<td>Low-level burial grounds</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>2.2 MTU</td>
<td>300 Area</td>
</tr>
</tbody>
</table>
Inventory
Stored Irradiated N Reactor Fuel

- Total
- 105-KE Basin
- 105-KW Basin

Irradiated Fuel Inventory (MTU)

OPERATING
N Reactor Operation

NOT OPERATING
PUREX Operation
Two Basins, Two Histories

K-East Basin
- Reactivated to store irradiated N Reactor fuel in 1975
- Superficial cleaning of basin surfaces, not drained, concrete surfaces not coated
- Received N Reactor fuel in open canisters

K-West Basin
- Reactivated to store irradiated N Reactor fuel in 1981
- Drained, completely decontaminated, concrete surfaces coated with epoxy resin
- Received N Reactor fuel in sealed, encapsulated canisters

Both basins have systems for heat, particulate and dissolved radionuclide removal
Tri-Party Agreement Milestones

- Issue Notice of Intent for N Reactor Fuel EIS
 - June 1994
- Begin K-East Basin fuel encapsulation
 - June 1994
- Submit engineering study on moving K-East fuel to K-West Basin
 - Sept. 1994
- Submit schedule for disposing of contaminated K-East Basin water
 - Oct. 1994
- Provide a schedule for fuel / sludge encapsulation and contaminated water removal / replacement to regulators
 - March 1995
- Begin K-East Basin sludge encapsulation
 - June 1996
- Negotiate long-term fuel storage and disposition with regulators
 - *June 30, 1996
- Complete K-East fuel and sludge encapsulation
 - Dec. 1998
- Remove encapsulated fuel and sludge from K Basins
 - Dec. 2002
- Remove, replace, or treat contaminated K-East Basin water
 - *TBD

*Enforceable milestones
Spent Nuclear Fuel Project
primary objective:

Eliminate urgent risk
- Remove fuel, sludge and contaminated water from the K Basins as soon as possible
Current Path for Removing K Basin Fuel

K Basins
- Contain fuel (East Basin)
- Contain sludge (East Basin)
- Remove fuel & sludge by 2002?

New facilities
- Construct process facility
- Construct storage complex
- Needs to operate by 1998 to meet 2002
Current Schedule Dilemma

K Basins
- Contain Fuel
- Contain Sludge
- Store

Fuel Stabilization
- Develop Process
- Design and Construct
- Process
- Regulatory Criteria?

Fuel Storage
- Design and Construct
- Store
Potential Strategies

- Expedited fuel removal
- Foreign alternatives
Expedited Fuel Removal

- Modify an existing facility for near-term storage of K Basin fuel
 - Ideally use facility as feed storage for stabilization process
- Fuel and sludge removed much earlier
- Doesn’t affect fuel stabilization, storage, and disposition options
- Stabilization and long-term storage are off critical path for K Basin closure
- Near-term construction budgets are reduced
Expedited Fuel and Sludge Removal

Phase I Facility
- Construct storage facility in existing alternate facility (FMEF / Canyon facility / Spray Ponds)
- Operate by 1997 (target)
- Store for up to 10 years

K Basins
- Contain fuel (East Basin)
- Contain sludge (East Basin)
- Remove fuel & sludge before 2002

Phase II Facility
- Construct process (preferably in same or adjacent facility)
- Construct storage complex
- Operate when ready (> 2000)
Achieving Expedited Strategy Requires...

- NEPA review concurrent with facility design and modification
- Issue NOI for Interim Action
- Capital funding plan for FY 1995 modification
- Early definition of regulatory criteria for near-term storage
- Development of acceptable retrieval/storage methodology
Foreign Alternatives

Year 2002 (Target)

Resolve issues → Prepare to ship → Ship

- Advantages
 - Lower investment in new facilities
 - Potentially lower life-cycle costs
 - No additional facilities to clean up

- Issues
 - Public involvement
 - Shipping
 - Institutional barriers
 - Challenge to meet 2002 target date
Key Milestones
Key Project Milestones

<table>
<thead>
<tr>
<th>Milestone</th>
<th>FY 1994</th>
<th>FY 1995</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seismic USQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilot Run Plan</td>
<td>Apr</td>
<td>Jan</td>
</tr>
<tr>
<td>Sludge Resolution Plan</td>
<td>May</td>
<td>Feb</td>
</tr>
<tr>
<td>Analysis Complete</td>
<td>Jun</td>
<td>Mar</td>
</tr>
<tr>
<td>Seismic Leak Isolated</td>
<td>Jul</td>
<td>Apr</td>
</tr>
<tr>
<td>K Basins Source Term Mitigation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initiate Project Engineering</td>
<td>Apr</td>
<td>Jan</td>
</tr>
<tr>
<td>Project Validation</td>
<td>May</td>
<td>Feb</td>
</tr>
<tr>
<td>Decision point: Capital funding</td>
<td>Jun</td>
<td>Mar</td>
</tr>
<tr>
<td>Sludge Packaging Demonstration</td>
<td>Jul</td>
<td>Apr</td>
</tr>
<tr>
<td>Tritiated Water Plan</td>
<td>Aug</td>
<td>Natl. Program Support</td>
</tr>
<tr>
<td>Expanded Fuel/Sludge Plan</td>
<td>Sep</td>
<td>Apr</td>
</tr>
<tr>
<td>Fire Protection Contract Awarded</td>
<td>Oct</td>
<td>Apr</td>
</tr>
<tr>
<td>Water Distribution Upgrade Contract Awarded</td>
<td>Nov</td>
<td>Apr</td>
</tr>
<tr>
<td>National Program Support</td>
<td>Dec</td>
<td>Apr</td>
</tr>
<tr>
<td>DOE Approves USQ Resolution</td>
<td>Jan</td>
<td>Apr</td>
</tr>
<tr>
<td>K Basin Fuel Handling</td>
<td>Feb</td>
<td></td>
</tr>
<tr>
<td>ORR</td>
<td>Mar</td>
<td></td>
</tr>
<tr>
<td>ORR Baseline Pilot Run</td>
<td>Apr</td>
<td>Apr</td>
</tr>
</tbody>
</table>

- **HQ action required**
- **Milestone complete**
To Achieve Milestones We Must...

Reprogram capital funding

- Accelerate fuel removal to interim facility
- K Basins essential systems

Reprioritize expense funding

- FY 1994: Reprioritize budgets to accommodate 60% increase in scope
- FY 1995: Anticipate additional budget review and reprioritization

Streamline review and approval process

- Delegation of approval authority to field
- Design/construction in parallel with NEPA review process

Define regulatory policy for future facilities

- DOE / NRC / EPA / RCRA

Assure public involvement in the SNFP decision process

- Strategic planning
- Fuel disposition alternatives
Spent Nuclear Fuel Project Logic

N Reactor and Single-Pass Reactor Fuel

Near-term Storage → Processing for Interim Storage

Storage Complex

Final Disposition

Other Hanford Fuel

Near-term Storage and Processing

Other Nuclear Materials
Hanford Spent Nuclear Fuel

General storage concepts

- Separate fuel storage
- Fuel storage complex
- Multi-purpose storage complex

Storage options

- Dry cask or caisson
- Wet pool
- Dry vault
Hanford Spent Nuclear Fuel

Stabilization options

- Drying
- Oxidation
- Separations