Unsaturated Zone Flow and Transport at Yucca Mountain

- George Zyvoloski
- Los Alamos National Laboratory
- NWTRB Board Meeting
- July 11-13, 1994
Los Alamos Radionuclide Migration Program

- Mineral Stability
- Mineralogy/Petrology
- Groundwater Chemistry
- Solubility
- Speciation
- Radiocolloids
- Natural Colloids
- Sorption
 - Biological Term
 - Radionuclide Migration (RSA)
 - Site Performance
- Flow Conditions
- Pathways
- Dispersion
- Diffusion

Earth and Environmental Sciences

Los Alamos
Retardation Sensitivity Analysis

- **Flow**
 - Fractures
 - Faults
 - Infiltration
 - Thermal Load

- **Sorption**
 - Min/Pet
 - Geochemistry

- **Numerical**
 - Geometric Realization
 - Numerical Diffusion
Outline of Talk

- Technical Challenges
- Solution Approaches
- Applications
- Concerns
- Future Developments
Technical Challenges

- Very Long Time Frame
- Complex Geologic Setting
- Complex Flow and Transport Mechanisms
Complex Geologic Setting

- 20 Defined Hydrogeologic Units
- More Units needed for Transport (Zeolite Zones)
- Topography Affects Infiltration and Gas Flow
20 Defined Hydrogeologic Units

- Stratigraphy/Topography Data from Project Databases
 - Sandia
 - USGS/LBL

- Other Data Includes
 - Intrinsic Permeability
 - Relative Permeability and Capillary Data
 - Fracture Volumes and Spacing
 - Faulting
Complex Flow and Transport Mechanisms

- Air/Water Vapor/Water/Heat
- Fracture Flow
- Dry Unsaturated Media
- Complicated Sorption and Diffusion
- Coupled Flow and Geochemistry
Complicated Sorption and Diffusion

- Retardation Factors Vary with Unit Type and Zeolitization
 - Data Obtained from Los Alamos Studies
 - Validation Studies are Planned
 - Fracture Data will be Provided

- Diffusion Can Be Important in Fracture Flow
 - Competition Between Fracture Flow and Matrix Diffusion
 - Data Obtained from Los Alamos Studies
Solution Approaches: FEHM Numerical Model

- Fully Coupled Fully Implicit Numerics
- Grid Generation
- Finite Element/Finite Volume Numerics
- Nonisothermal Multiphase
- Dual Porosity/Dual Permeability Module
- Comprehensive Transport/Geochemistry Module
Applications

- Grids
- Transport Studies
- 3-d Flow and Transport (Conservative Tracer)
High and Low Resolution Structured and Unstructured Mesh
Transport Studies

- 36Cl - Residence Time Indicator
- Np
- Dissolution/Precipitation with Repository Heat
Antler Ridge Cross Section, Yucca Mountain

Colors Denote Different Stratigraphic Units
Cl-36 Distribution, Low Infiltration Rate

Distance, m

Elevation, m

Normalized Cl-36 Concentration
Cl-36 Distribution, High Infiltration Rate

Distance, m

Elevation, m

Normalized Cl-36 Concentration
FEHM Np Transport Time Simulations
(Continuum Model)

<table>
<thead>
<tr>
<th></th>
<th>Np Transport Time* (million yr)</th>
<th>Infil. Rate = 0.0365 mm/yr</th>
<th>Infil. Rate = 0.365 mm/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom</td>
<td>2.3</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td>6.4</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td>∞</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Entire Repository</td>
<td>4.8</td>
<td>0.45</td>
<td></td>
</tr>
</tbody>
</table>

* time for 1% of Np to reach the water table

\[^{237}\text{Np: } t_{1/2} = 2.14 \times 10^6 \text{ yr} \]

\[K_d: 4 \text{ g/cc in CHn1 and CHn2, 0.5 g/cc elsewhere} \]
FEHM Np Transport Time Simulations
(Dual Porosity/Dual Permeability Model)

Assumptions
- Total repository breach
- Fracture spacing = 10 m
- Infiltration rate = 0.0225 mm/yr
- \(K_{d,frac} = 0; \ K_{d,\text{matrix}} = 0.5 - 4 \ \text{g/cc} \)

Case 1: \(D_{mol} = 0 \)
Transport time = 25,000 yr

Case 2: \(D_{mol} = 1 \times 10^{-11} \ \text{m}^2/\text{s} \)
Transport time = 240,000 yr

Conclusion: Transport time increases significantly if credit can be taken for matrix diffusion and/or sorption on fracture surfaces.

Earth and Environmental Sciences
Los Alamos
Dissolution/ Precipitation with Repository Heat

- Explore Reactions with EQ3/6
- Download Small Set (5-10 Reactions) to FEHM
- Simulate Coupled Flow and Geochemistry

Earth and Environmental Sciences

Los Alamos
Temperature at 10000 Years

Elevation, m

Distance, m

Temperature, deg. C
Saturation at 10000 Years Long Geochemical Effect on Permeability

Saturation at 10000 Years

Distance, m

Elevation, m

Distance, m
Distribution of Reacting Solid at 10000 Years

Distribution of Reacting Solid at 10000 Years, Strong Geochemical Effects on Permeability

Fraction of Reacting Solid
Concerns

- Availability of Data
 - Geology
 - Flow Parameters
- Computing Power for Fine Grid Simulations
- Geostatistics (Multiple Realizations)
- Validation or Confidence Building
Where we need to be

- 1,000,000 nodes
- Air/Water/Water Vapor/Heat Physics
- Dual Permeability
- Geochemistry
Future Work

- Fine Grid-Minimum K_d
- Parallel Computation
- GUI Interfaces
- Stratigraphic Interfaces (Faults)
- Particle Tracking
Summary

- **Transport**
 - Complex Flow Requires 3-d Models
 - Need to Incorporate Min/Pet Studies

- **Coupled Flow and Geochemistry**
 - Is Important Near the Repository
 - Technically Feasable

- **36Cl**
 - Useful in Residence Time Studies
 - Can Indicate Fast Flow Paths Where More Resolution Is Required

- **Np**
 - Significant retardation of Np in Calico Hills Units
 - If significant fracture flow exists, matrix diffusion or fracture sorption will be required to increase travel times