Performance Assessment and Radionuclide Transport

Presentation to Nuclear Waste Technical Review Board
July 12, 1994

Ralston W. Barnard
Sandia National Laboratories
Albuquerque, NM 87185
(505) 848-0738
Outline

• Near-field performance-assessment models
 • evolution of TSPA source-term models
 • abstraction of near-field processes
 • near-field transport
• Total-system performance-assessment transport models
 • transport models for unsaturated conditions
 • strengths and weaknesses of model abstractions
 • model and parameter sensitivities
• Interactions with site-characterization work
 • guidance for data collection
 • evaluating worth and sufficiency of data

Evolution of PA Source-Term Models

PACE-90

TSPA-91

TSPA-93
YMIM Functionality and Modules

Near-Field Hydrology → Rock-to-Container Flow → Internal Container Flow

Near-Field Chemistry

Container Failure

Rod and Container Temperature

Cladding Failure

Nuclide Behavior

Waste-Form Dissolution

Radionuclide Releases

Source-Term Assumptions Made in TSPA-93

- Waste-package corrosion is strongly temperature- and water-contact dependent
 - in-drift emplacements are backfilled after 75 years
- Cladding is not modeled as a barrier to radionuclide release
- Mobilized radionuclides are transported from the EBS by advection with no time delay
- Solubilities are based on far-field parameters and are not temperature-dependent
Transport-Model Assumptions made in TSPA-93

- Two extreme conceptualizations for water transport
 - through fractures ("weeps" model)
 - mostly through matrix (composite-porosity model)
- Sorption strongly controls what radionuclides can be transported to accessible environment
- Colloid transport not considered
- Thermal effects only apply to near field
 - far-field transport is isothermal

Consequences of TSPA-93 Assumptions

(Source Releases)

- Large releases from EBS under some circumstances
 - high releases occur during glacial "wet" periods
 - maximum releases for some radionuclides are up to 100 times the NRC limit

![Graph showing release rates of different radionuclides over time](image)
Consequences of TSPA-93 Assumptions, Continued
(Million-Year Doses)

- Doses at accessible environment are due to readily transported radionuclides
 - difference between weeps and composite-porosity doses is due to shorter UZ travel time

Evaluation of Transport-Model Sensitivities

- Transport processes from waste package to near-field host rock may be a significant barrier to releases
 - models for advective and diffusive transport exist, but their relative importance is not known
- Releases are sensitive to the choice of flow conceptualization
 - 1-D composite-porosity model does not realistically describe fracture flow
 - 2-D dual-porosity flow model being developed for future analyses
Transport-Model Sensitivities, Continued

- Colloids must be included in models
 - colloid source term
 - spent-fuel sources
 - glass HLW sources
 - degradation of MPC outer layer
 - Importance of large amounts of Fe$_x$O$_y$
 - colloid transport
 - interactions with fracture surfaces and fillings

Interactions with Site and Process Characterizations

- Source term
 - better understanding of container corrosion processes
 - development of near-field solubility models
 - development of colloid-formation models

- Near-field transport
 - diffusive and advective transport under dynamic conditions
 - high temperatures/limited water
 - aggressive geochemical and radiolytic environments

- UZ flow models
 - coordination of SNL and LBL/USGS site stratigraphic models
 - incorporation of site data/recommendations for further data collection
Development of Improved PA Models

PA Integration Tasks:
- Flow in Discrete Fractures
- Heterogeneity and Scaling
- Non-Isothermal Fluid Flow
- Geochemical Retardation

\[\text{Groundwater Travel Time} \rightarrow \text{Abstracted PA Models} \]
\[\text{Abstracted PA Models} \rightarrow \text{Radionuclide Transport} \]

“When to Say When”

- Heterogeneous groundwater-flow domain is an attempt to provide a realistic basis for evaluation of flow models
 - 3-D geostatistical rock model will allow studies of sensitivity of fast flow paths to hydrogeologic structure
 - data from faults and fractures may be more important than matrix data
- Waste-package design and repository layout may dictate thermal regime
 - range of models used in TSPA-93 may not be appropriate in future
- Colloid transport must be studied further to bound its importance
Implementing PA Recommendations

(More than just a list in the PA document)

- Formal presentations to TPOs, WBS managers, NWTRB
- Peer-to-peer interactions among participant PIs
 - ongoing informal exchanges of data and results
 - feedback among participants
- Inclusion of PA recommendations while planning future activities and milestones

Summary

- Recent TSPA studies have shown strengths and weaknesses of
 - source-term model
 - flow and transport model
 - geochemical models
- TSPA-93 recommended additional investigations to reduce uncertainties
 - PA integration effort is an attempt to do detailed modeling to reduce uncertainties in TSPA models
- Major areas of process uncertainties are
 - near-field processes (transport, geochemistry, etc.)
 - colloid transport