U. S. DEPARTMENT OF ENERGY
OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT

NUCLEAR WASTE TECHNICAL REVIEW BOARD

SUBJECT: COMPATIBILITY OF EXISTING INTERIM STORAGE SYSTEMS WITH THE WASTE DISPOSAL HANDLING SYSTEMS

PRESENTER: Jeffrey Williams
Dean Stucker

PRESENTER'S TITLE AND ORGANIZATION: Chief, Facilities Development Branch
Chief, Field Engineering Branch

PRESENTER'S TELEPHONE NUMBER: (202) 586-9620
(702) 794-7275

Dallas, Texas
November 1-2, 1993
Out-of-Pool Storage Comparison

Peak Inventory (MTU) vs Year

- No MRS, Repository in 2020
- 1998 MRS, Capacity Limits, Repository in 2010
- No Limits, Repository in 2010
Dry SNF Storage as of October 1993
STORAGE SYSTEMS IN USE

<table>
<thead>
<tr>
<th>Reactor</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surry</td>
<td>Metal Casks</td>
</tr>
<tr>
<td>H. B. Robinson</td>
<td>Horizontal Concrete Storage Modules</td>
</tr>
<tr>
<td>Oconee</td>
<td>Horizontal Concrete Storage Modules</td>
</tr>
<tr>
<td>Ft. St. Vrain</td>
<td>Modular Vault Dry Storage</td>
</tr>
<tr>
<td>Palisades</td>
<td>Vertical Concrete Casks</td>
</tr>
</tbody>
</table>
DRY STORAGE TECHNOLOGIES IN USE

Metal Casks

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Where Used</th>
<th>Status</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNS</td>
<td>Surry</td>
<td>Certificate for General License</td>
<td>Castor V-21</td>
</tr>
<tr>
<td>Westinghouse</td>
<td>Surry</td>
<td>Certificate for General License</td>
<td>MC-10</td>
</tr>
<tr>
<td>Nuclear Assurance</td>
<td>Surry</td>
<td>Certificate for General License</td>
<td>NAC-S/T</td>
</tr>
<tr>
<td>Nuclear Assurance</td>
<td>Surry</td>
<td>Certificate for General License</td>
<td>NAC-128-1</td>
</tr>
</tbody>
</table>
DRY STORAGE TECHNOLOGIES IN USE

Concrete Casks

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Where Used</th>
<th>Status</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacific Nuclear</td>
<td>HB Robinson</td>
<td>ISFSI License</td>
<td>NUHOMS-7P</td>
</tr>
<tr>
<td>Pacific Nuclear</td>
<td>Oconee</td>
<td>ISFSI License</td>
<td>NUHOMS-24P</td>
</tr>
<tr>
<td>Foster Nuclear</td>
<td>Fort St. Vrain</td>
<td>ISFSI License</td>
<td>MVDS</td>
</tr>
<tr>
<td>Sierra Nuclear</td>
<td>Palisades</td>
<td>Certificate for</td>
<td>VSC-24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>General License</td>
<td></td>
</tr>
</tbody>
</table>
FUTURE DRY STORAGE TECHNOLOGIES

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Where Used</th>
<th>Status</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trans Nuclear</td>
<td>TBD</td>
<td>Certificate for General License</td>
<td>TN-24</td>
</tr>
<tr>
<td>Trans Nuclear</td>
<td>Prairie Island</td>
<td>Under Review</td>
<td>TN-40</td>
</tr>
<tr>
<td>Babcock & Wilcox</td>
<td>TBD</td>
<td>Under Review</td>
<td>CONSTAR</td>
</tr>
<tr>
<td>AECL</td>
<td>TBD</td>
<td>Generic Design</td>
<td>MACSTOR</td>
</tr>
<tr>
<td>Foster Wheeler</td>
<td>TBD</td>
<td>TSAR for LWR fuel</td>
<td>MVDS</td>
</tr>
<tr>
<td>Burns & Roe</td>
<td>TBD</td>
<td>Generic design for storage</td>
<td>Concrete Vault Storage</td>
</tr>
<tr>
<td>GNS</td>
<td>TBD</td>
<td>Under Review</td>
<td>CASTOR X</td>
</tr>
</tbody>
</table>
COMPATIBILITY WITH THE WASTE MANAGEMENT SYSTEM

- Existing Storage casks not licensed for Transportation.
- The existing storage technologies unlikely to be licensed for Transportation.
- Need to return to fuel pool for unloading, and reloading into transport casks.
- Consequence of unloading at reactors has been evaluated.
- New Dual Purpose Technologies
 - Once licensed for Storage/Transportation DOE will take appropriate actions to include this as acceptable Waste Form.
COMPATIBILITY OF STORAGE TECHNOLOGIES WITH MRS

• All can be used for storage at the MRS.

• Receipt of these technologies at MRS not fully evaluated.
 - do not see problems.
 - evaluated opening NUHOMS dry storage canisters.
TECHNICAL ISSUES WITH COMPATIBILITY GOALS

Part 71 Issues

Burnup Credit Criticality Control

Transportation Structural Criteria

Waste Acceptance Criteria

Full Range of SNF Characteristics

System Optimization
COMPATIBILITY OF EXISTING STORAGE SYSTEMS WITH MPC

- Commerce Business Daily Notice
- Response by commercial vendors
 - Pacific Nuclear
 - Nuclear Assurance
 - B&W Fuel Co.
 - Burns & Roe
 - Transnuclear, Inc.
 - Sierra Nuclear Corp.
- MPCs cause small impact on existing storage designs.
SUMMARY

• Several technologies are available.

• At reactor dry storage will increase.
 - an MRS facility can reduce this burden.

• Anticipated that more storage technologies will be developed.

• Existing at reactor storage only technologies are not compatible with DOE-OCRWM program.

• DOE propose to take appropriate action to make anticipated transportation/storage technologies an acceptable waste form for the DOE-OCRWM program.
Repository Requirements

• Must meet Title 10 CFR Part 60

 - Long term criticality control
 - Sufficient neutron absorber materials
 - Gap only flux trap designs not acceptable

 - Thermal output
 - Large packages compatible with above boiling thermal loading
 - Requires high thermal conductivity basket

 - Design life
 - Greater than 1000 years
 - Materials must survive in the anticipated repository environment
MGDS Waste Disposal
Handling Impacts

- Variety of interim storage systems will have major differences in height, weight, diameter, heat load and radiation dose rate

- Standardization improves surface facilities operations, equipment reliability, maintenance, and safety

- Waste package transporter design more complex due to need for added flexibility
MGDS Waste Disposal
Handling Impacts (Continued)

- Management of thermal loading more complex due to variety of waste package heat loads

- Emplacement and retrieval operations more complex due to differences in waste package configurations

- Standardization of waste package configurations reduces MGDS life cycle costs
Interim Storage Strategy Summary

- No existing technical barriers to interim storage
- MRS siting remains key institutional issue
 - MRS host conditions are unknown
- Challenge is to integrate an institutionally acceptable approach into a safe, environmentally sound, cost effective system that meets currently existing storage and transportation requirements, without precluding disposal requirements
- MPC effort is a key part of this work