U.S. DEPARTMENT OF ENERGY
OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT

NUCLEAR WASTE TECHNICAL REVIEW BOARD
FULL BOARD MEETING

SUBJECT: TOTAL SYSTEM PERFORMANCE ASSESSMENT (TSPA) II: ENHANCEMENTS TO TSPA-1991

PRESENTER: DR. HOLLY A. DOCKERY

PRESENTER'S TITLE AND ORGANIZATION: MANAGER, YUCCA MOUNTAIN PERFORMANCE ASSESSMENTS, DEPT. 6312 SANDIA NATIONAL LABORATORIES ALBUQUERQUE, NEW MEXICO

PRESENTER'S TELEPHONE NUMBER: (505) 844-1756

DENVER, COLORADO
JULY 13-14, 1993
Major TSPA II Objectives

• Evaluate effects of alternative
 - Thermal regimes
 - Emplacement modes
 - Waste-package designs

• Incorporate new site information

• Evaluate effects of alternative performance measures

• Conduct sensitivity/uncertainty analyses
TSPA II Source Term

- Will couple hydrologic, thermal, and chemical effects
- Will include alternative emplacement and thermal-loading strategies
- Will use inventory based on current waste-stream estimates
- Inventory chosen for both release and dose effects
Repository Areas Modeled for Alternative Emplacements and Thermal Loads

57 kW/Ac Thermal Loading

Area = ~820 acres

114 kW/Ac Thermal Loading

Area = ~480 acres

114 kW/Ac Thermal Loading

Area = ~410 acres

(SCP Layout)

Ghost Dance Fault

(In-drift Layout)
Inventory Based on Current Waste-Stream Estimates

- **Spent fuel**
 - 25-year decay
 - 40 GWd/MTU (PWR), ~58% of total
 - 30 GWd/MTU (BWR), ~32% of total

- **Glassified high-level waste** ~10% of total
Source Term Module
(Developed in Cooperation with LLNL)

- Coupled thermal and hydrological processes
 - Boiling front, dryout, reflux

- Multiple barriers
 - Waste-package degradation processes
 -- Pitting corrosion
 -- General corrosion
 - Waste-form degradation
 -- High-temperature oxidation
 -- Aqueous alteration
 -- Congruent leaching
Dryout and Reflux from Thermal Effects
Failure Distribution for all Waste Packages
(as simulated by YMIM)

TIME SINCE EMLACED (years)

Wet-Generalized
Wet-Localized
Dry
Juvenile

CUMULATIVE FAILURE

0

0 1000 10000

~10,000
Thermal Effects Incorporated in the Weeps Model

Thermal Input Data

1
Containers outside of Boiling Isotherm

2
Volume encompassed by Boiling Isotherm

3
Temperature of Container Wall

Weep DCTSNLD8 125 NWTRB/7-13/14-93
Major TSPA II Objectives

• Evaluate effects of alternative
 - Thermal regimes
 - Emplacement modes
 - Waste-package designs

• Incorporate new site information

• Evaluate effects of alternative performance measures

• Conduct sensitivity/uncertainty analyses
East-West Transect Used to Generate Column 2

Second Simulation

Tenth Simulation

Elevation

West

East

DCTSNLHD11.125.NWTRB/7-13/14-93
Major TSPA II Objectives

- Evaluate effects of alternative
 - Thermal regimes
 - Emplacement modes
 - Waste-package designs

- Incorporate new site information

- Evaluate effects of alternative performance measures

- Conduct sensitivity/uncertainty analyses
Dose Calculation Module

Repository Block

Containment Plume

5 Kilometers

Water Well
Major TSPA II Objectives

- Evaluate effects of alternative
 - Thermal regimes
 - Emplacement modes
 - Waste-package designs
- Incorporate new site information
- Evaluate effects of alternative performance measures
- Conduct sensitivity/uncertainty analyses
Sensitivity Analyses

- Sensitivity studies performed on TSPA-91 aqueous release models

- Sensitivities highly dependent on conceptual model used
 - Composite porosity most sensitive to
 -- Percolation flux
 -- Gaseous transport time
 -- Container lifetime
 -- Fuel matrix alteration rate
 - Weeps Model most sensitive to
 -- Fracture aperture
 -- Fracture connectivity
 -- Infiltration (flux and number of episodes)
Sensitivity of Aqueous Releases to Percolation Flux (Composite-Porosity Model)
Summary of SNL TSPA-II

Improvements on First Iteration

- Coupled thermal/hydrologic processes
- More sophisticated source term
- Saturated zone model constructed using more site information
- Dose module
- Sensitivity studies