SUBJECT: ALTERATION HISTORY OF YUCCA MOUNTAIN DUE TO THERMAL EFFECTS: ANALOGUE FOR A HOT REPOSITORY?

PRESENTER: DR. DAVID L. BISH

PRESENTER'S TITLE AND ORGANIZATION: TECHNICAL STAFF MEMBER
EARTH AND ENVIRONMENTAL SCIENCES DIVISION
LOS ALAMOS NATIONAL LABORATORY
LOS ALAMOS, NEW MEXICO

PRESENTER'S TELEPHONE NUMBER: (505) 667-1165

DENVER, COLORADO
JULY 13-14, 1993
Cross-Section A-A' along Antler Ridge at Yucca Mountain, Nevada

CONTOUR INTERVAL = 100 FT (30.5M)
Mineralogical Alteration

- Goal is to predict the effects of repository-induced temperature and $P(\text{H}_2\text{O})$ changes on the current mineral assemblages

  - Potential alteration, dissolution-precipitation reactions:
    -- Glass $\rightarrow$ zeolite/smectite/silica assemblage
    -- Clinoptilolite $\rightarrow$ analcime, alkali feldspar
    -- Mordenite $\rightarrow$ analcime
    -- Silica dissolution/precipitation

  - Potential hydrologic effects:
    -- Decrease in permeability in vitric, vitrophyre horizons
    -- Increase in permeability in zeolitic horizons
    -- Change in nature of water storage capacity
Cross-Section of Yucca Mountain along Antler Ridge
showing the Maximum Dry-out Zone
at 114kW/Acre

- Condensation
- Umbrella
- Ghost Dance Fault
- Potential Repository
- Condensation and Downward Drainage
- Static Water Level

Legend:
- Anhydrous Tectosilicates
- Vitric Nonwelded
- Glass & Smectite
- Vitrophyre
- Zeolites

(5x vertical exaggeration)
Information Desired from a Natural Analogue

- Long-term behavior of rocks and minerals in a repository environment
  - Difficult to obtain in lab (low temperatures and long reaction times)
Difficulties with Natural Analogues

- Defining past conditions
- Locating representative conditions
- Identifying representative mineral assemblages
- Yucca Mountain not presently an active system; water amounts and concentrations during alteration unknown
Yucca Mountain as a Natural Analogue to Repository-Induced Alteration

1. Hydrothermal system in northern Yucca Mountain
   - Illite/smectite, fluid-inclusion geothermometers
   - Determine apparent long-term mineral stabilities

2. Topopah Spring vitrophyre alteration
   - Dynamic alteration, concentrated around fractures
   - State of saturation uncertain, spatially variable

3. Vitric-zeolitic transition in the Calico Hills Formation
Southwestern Nevada Volcanic Field, Nye County, Nevada

Black Mountain Caldera

Silent Canyon Caldera

Sleeping Butte Caldera Segment

Timber Mtn. Caldera

Oasis Valley Caldera Segment

Claim Canyon Cauldron Segment

Crater Flat

Yucca Mountain

Wahmonie-Salyer volcanic center

Note:
Heavy lines with hatchure marks to the inside represent the approximate outer limit of the Timber Mountain-Oasis Valley Caldera complex, including the Sleeping Butte and Claim Canyon segments (dashed where indefinite). Heavy lines with hatchure marks to the outside represent the periphery of the Timber Mountain resurgent dome. Drill cores USW G-1, G-2, G-3 are shown.

(From Byers et al. 1976)
Mineral Distribution in Drill Hole USW G-2 from X-Ray Powder Diffraction Data
Northern Yucca Mountain Hydrothermal System

- A hydrothermal system existed beneath the north end of Yucca Mountain ~10.7 Ma, ~1Myr duration

- Paleogeothermal profiles are consistent with a change from a meteorically cooled zone to a convective zone, with depth

- Apparent long-term (saturated) thermal stabilities of minerals in Yucca Mountain tuffs:
  - Clinoptilolite ~100°C
  - Mordenite ~130°C
  - Analcime 175-200°C
  - Cristobalite 90-100°C in G-2, lower in G-3
  - Reactions in G-3 appear to be water-chemistry dominated
Importance of Mineralogical Alteration

- Transformation of clinoptilolite to analcime
  - reaction times and temperatures?

2.67 clinoptilolite → 1 analcime + 1 quartz + 48H₂O

Clinoptilolite: Na₆Al₆Si₃₀O₇₂ • 24H₂O (V = 2100.0 Å³)
Analcime: Na₁₆Al₁₆Si₃₂O₉₆ • 16H₂O (V = 2585.8 Å³)
Quartz: Si₃O₆ (V = 113.01 Å³)
Cristobalite: Si₄O₈ (V = 172.17 Å³)

Volume of reactants = 2.67(2100.0) = 5607.0 Å³
Volume of products = 2585.8 + 16(113.01) = 4393.96 Å³
Volume of products = 4651.8 Å³ w/cristobalite

ΔV = -21.5% (-16.9% w/cristobalite)

- Possible silica mobilization in the reflux zone
- Volume decrease
- H₂O generation
- Loss of sorptive phase
Topopah Spring Vitrophyre

- Transition zone between Topopah Spring devitrified tuff and vitrophyre a potential natural analogue to repository-induced alteration
  - Uncertain saturation; spatially variable

- Alteration dynamic; concentrated around fractures

- Natural alteration assemblage suggests vitrophyre alteration to clinoptilolite, smectite, and silica phases (40-100°C, oxygen isotope geothermometry)

- Suggests that mineral sealing of fractures in vitrophyre may occur
Devitrified Fracture Detail from GU-3, 1195-Ft. (364.2m) Depth

Fracture with quartz filling
Devitrified border
Zeolite and smectite
Unaltered vitrophyre
## Isotopic Compositions and Temperatures of Secondary Quartz Formation

<table>
<thead>
<tr>
<th>Sample</th>
<th>$\delta^{18}O$ (%o, SMOW)</th>
<th>$T_A$ (°C)</th>
<th>$T_B$ (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VH2-3545-q</td>
<td>13.0</td>
<td>65</td>
<td>95</td>
</tr>
<tr>
<td>VH2-3565a</td>
<td>11.9</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>YF-4-q</td>
<td>17.8</td>
<td>40</td>
<td>70</td>
</tr>
</tbody>
</table>

$T_A$ Calculated from Clayton & others (1972)
$T_B$ Calculated from Bottinga & Javoy (1973)
$\delta^{18}O$ of -13.5‰ assumed for the water
Analyses reproducible to ±0.1‰
SMOW = standard mean ocean water
Alteration of Vitrophyre Glass

<table>
<thead>
<tr>
<th></th>
<th>Glass</th>
<th>Smectite</th>
<th>Heul-Clinopt.</th>
<th>Cristobalite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si Moles Cation/cm³</td>
<td>0.029</td>
<td>0.014</td>
<td>0.024</td>
<td>0.038</td>
</tr>
<tr>
<td>Al Moles Cation/cm³</td>
<td>0.006</td>
<td>0.008</td>
<td>0.006</td>
<td>0</td>
</tr>
</tbody>
</table>

BSHTRB3.CDR.125.NWTRB.7/13-14/93
Vitric-Zeolitic Transition

- Saturated hydraulic conductivity decreases by $10^2$-$10^4$ going from vitric to zeolitic

- Porosity decreases from ~37% to ~29%

- Water reservoirs:
  - Clinoptilolite tuff
    -- 0.29 g/cm$^3$ in pores
    -- 0.26 g/cm$^3$ in clinoptilolite (strongly held)
  - Vitric, nonwelded tuff
    -- 0.37 g/cm$^3$ in pores

- Vitric tuff in contact with warm condensate may react quickly, depending on degree of saturation
Conclusions

- Deep alteration system represents a saturated end member
  - Information on stability of zeolites and silica phases

- Vitric to zeolitic transition in nonwelded tuffs
  - Porosity decreases little; storage significantly different
  - Saturated hydraulic conductivity decreased by $10^2$-$10^4$

- Topopah Spring alteration may be appropriate analogue
  - Unsaturated zone (?)
  - Geologically short duration
  - Fracture dominated and spatially variable
  - Evidence of glass dissolution and mineral sealing
  - Channeling and concentration of fluids

- Alteration of fractured, welded rock
  - Little alteration, but potential silica redistribution in reflux zone
  - Potential changes in permeability and porosity
Future Work

- Kinetics of dissolution/precipitation of silica polymorphs, including opal-CT

- Kinetics of dissolution/precipitation of clinoptilolite, mordenite, and analcime

- Performing coupled transport/chemical reaction modeling

- Reaction of existing phases under partially saturated or steam conditions