U.S. DEPARTMENT OF ENERGY
OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT

NUCLEAR WASTE TECHNICAL REVIEW BOARD
FULL BOARD MEETING

SUBJECT: Modeling Flow in Unsaturated Zone Fractured Rocks

PRESENTER: Edward M. Kwicklis
PRESENTER'S TITLE AND ORGANIZATION: Hydrologist
U.S. Geological Survey
Denver, Colorado

PRESENTER'S TELEPHONE NUMBER: (303) 236-6228

RENO, NEVADA
APRIL 21-22, 1993
Example Model Hierarchy

Global Climate Model (GCM)

Regional Climate Model (RCM)

Climatic Parameters

Watershed Model

Net Infiltration

Geohydrologic Model for UZ System

Deep UZ Moisture Distribution and Flux

Paleoclimate Studies

- Precipitation
- Air Temperature
- Solar Radiation
- Wind

S. Thompson

E. Kwicklis

Hydrologic Process Models

J. Rousseau

J. Stuckless

A. Flint

G. Bodvarsson

Site-Suitability Evaluations

Performance Assessment
Outline

Study Objectives

Site Processes

Possible Methods of Flux Estimation

Examples of Recent Work

Conclusions
Study Objectives

- Construct conceptual and numerical representations of the physical processes that govern fluid flow and nonreactive tracer transport through partially saturated fractured rock

- Evaluate these through comparison with the results of controlled experiments
These Models Will be Used to

- Identify processes important to the hydrologic behavior of the unsaturated zone
- Design and analyze experiments and interpret field data
- Integrate data collected from a variety of scales
- Assess the conceptual representation of the physical system in large-scale models of the site
Test and Modeling Scales

TCw

PTn

TSw

Single Fracture Tests

Percolation Tests

Cross-Hole Tests
Outline

Study Objectives

Site Processes

Possible Methods of Flux Estimation

Examples of Recent Work

Conclusions
General Conceptual Model of Flow Regime at Yucca Mountain
(from Montazer and Wilson, 1984)

EXPLANATION

A ALLUVIUM
TC TIVA CANYON WELDED UNIT
P PAINTBRUSH NONWELDED UNIT
TB TOPOPAH SPRING WELDED UNIT
CH CALICO HILLS NONWELDED UNIT

CF CRATER FLAT UNIT
→ DIRECTION OF LIQUID FLOW
→ DIRECTION OF VAPOR MOVEMENT
△ PERCHED WATER
Analyses of Percolation Flux will Consider

- Multiphase processes
- Fracture-matrix interactions
- Variable climate, and temporally and spatially variable net infiltration
- Stratigraphic discontinuities
- The possibility of focused percolation
Outline

Study Objectives

Site Processes

Possible Methods of Flux Estimation

Examples of Recent Work

Conclusions
Possible Methods for Estimating Percolation Flux

- Direct calculation from Darcy's law
- Direct observation; for example, measurement of inflow in ramps and drifts
- Environmental tracers; for example, ^{14}C, tritium, ^{36}Cl
- Numerical modeling
Limitations and Constraints

• Flux estimates from each method subject to some uncertainty

• Complementary methods must yield internally consistent picture of the liquid flux and its spatial distribution

• Degree of accuracy and certainty required in estimates of percolation flux depend, in part, on performance assessment analyses and characteristics of the engineered barriers
Outline

Study Objectives

Site Processes

Possible Methods of Flux Estimation

Examples of Recent Work

Conclusions
Examples of Modeling That Have Been Done to Understand Flow Behavior or to Estimate Liquid Flux

- Numerical investigation of steady liquid water flow in a variably saturated fracture network

- Estimation of unsaturated zone liquid water flux at boreholes UZ #4, UZ #5, UZ #7, and UZ #13
Numerical Investigation of Steady Liquid Water Flow in a Variably Saturated Fracture Network (Kwicklis and Healy, 1993)

Objectives:

• To gain insight into the formation of preferential pathways within variably saturated fracture networks

• To assess the limitations and potential implications of point measurements of water potential in the field

• To evaluate the equivalent porous media representation of variably saturated fracture systems
Fracture Network Assumed for Simulation

PRESCRIBED WATER POTENTIAL BOUNDARY

125 micron fractures

25 micron fractures

NO-FUX BOUNDARY

X, in meters

Y, in meters

PRESCRIBED WATER POTENTIAL BOUNDARY
Simulation Assumptions

- Numerical simulation in vertical 5m-by-5m flow region

- Two fracture sets
 - Sub-vertical set with five 125 micron fractures
 - Sub-horizontal set with four 25 micron fractures

- Impermeable matrix

- Steady-flow

- Ignore hysteretic effects
Permeability-Thickness Products as a Function of Water Potential

![Graph showing permeability-thickness products as a function of water potential. The graph includes a crossover point indicating water potential, with two fracture lines at 25 um and 125 um.]
Location of Principal Flow Paths for Boundary Water Potentials of 0.0 Meters
Location of Positive Water Potentials for Boundary Water Potentials of 0.0 Meters
Location of Principal Flow Paths for Boundary Water Potentials of -0.25 Meters
Location of Most Negative Water Potentials for Boundary Water Potentials of -0.25 Meters

ZONE OF MOST NEGATIVE WATER POTENTIAL

X, in meters

Y, in meters

4MFUZK5P16.125.NWTRB/4-21/22-93
Standard Deviation of Fractional Flux as a Function of Boundary Water Potential

![Graph showing standard deviation of fractional flux as a function of boundary water potential. The graph includes data points for mixed network, 125 um fractures, and 25 um fractures.](image)
Standard Deviation of Water Potential as a Function of Boundary Water Potential
Equivalent Continuum Permeability as a Function of Boundary Water Potential
Conclusions from Fracture Network Modeling

- Water potential and flux are spatially variably within a network containing fractures of different aperture, even for steady-state flow.

- The tendency for flow to become concentrated, as well as the location of the dominant flow pathways, varies as a function of the boundary water potential.

- Variability in water potential within the flow domain is a function of the boundary water potential.
Implications

• Measurements of water potential may reflect only the local environment for certain experimental conditions

• Some poorly connected fractures may be saturated and drain when intersected by boreholes or drifts

• Dominant flow pathways through fracture networks, if they occur, may change in response to changing climatic conditions
Estimation of Unsaturated Zone Liquid Water Flux at Boreholes UZ #4, UZ #5, UZ #7, and UZ #13 from Saturation and Water Potential Profiles (Kwicklis, Flint, and Healy, 1993)

Objectives:

• To estimate liquid water fluxes through the nonwelded and bedded units

• To better understand recharge mechanisms and the role of the nonwelded units in redistributing infiltration

• To examine the internal consistency of hydrologic data collected to date

• To develop numerical models consistent with available data
Methods

- Regression analyses using porosity (ϕ) as a predictor variable for K and van Genuchten parameters α and β

- Calculate saturation profiles for unsaturated zone boreholes from porosity, bulk-density, and gravimetric water-content information

- Estimate more or less continuous profiles of unsaturated K versus depth at unsaturated zone boreholes using regression relations between K, α, β and ϕ, and measured S_i

- Use measured and predicted water potentials, along with estimates of unsaturated K, to estimate liquid flux versus depth from Darcy's law
Porosity versus Depth, UZ #5

Depth, in meters

Porosity

- Tiva Canyon Member
- Bedded Unit
- Yucca Mt. Member
- Bedded Unit
- Paeh Canyon Member
- Bedded Unit
- Topopah Spring Member

4MFUZKSP24 125 NWTRB/4-21/22-93
Saturation versus Depth, UZ #5

![Saturation versus Depth Diagram]

- TIVA CANYON MEMBER
- BEDDED UNIT
- YUCCA MT. MEMBER
- BEDDED UNIT
- PAH CANYON MEMBER
- BEDDED UNIT
- TOPOPAH SPRING MEMBER
Measured Water Potentials versus Depth, UZ #5
(with 5th Order Polynomial Fit to Data From Nonwelded Horizons)
Predicted Water Potentials, UZ #5

- TIVA CANYON MEMBER
- BEDDED UNIT
- YUCCA MT. MEMBER
- BEDDED UNIT
- PAH CANYON MEMBER
- BEDDED UNIT
- TOPOPAH SPRING MEMBER
Predicted Water Potentials, UZ #5 (Calibrated)
Estimated Effective Hydraulic Conductivity, UZ #5

![Graph showing effective hydraulic conductivity versus depth]

- TIVA CANYON MEMBER
- BEDDED UNIT
- YUCCA MT. MEMBER
- BEDDED UNIT
- PAH CANYON MEMBER
- BEDDED UNIT
- TOPOPAH SPRING MEMBER

effective hydraulic conductivity, in meters/year

depth, in meters
Estimated Liquid Flux, UZ #5
Calculated Using Predicted Water Potentials

- TIVA CANYON MEMBER
- BEDDED UNIT
- YUCCA MT. MEMBER
- BEDDED UNIT
- PAH CANYON MEMBER
- BEDDED UNIT
- TOPOPAH SPRING MEMBER
Estimated Liquid Flux, UZ #5
Calculated Using Polynomial Fit to Measured Water Potential Profile
Tritium Distribution, UZ #5
Conclusions

• Important statistical correlations were established that allow augmentation of existing hydrologic data and constrain parameter space in numerical models.

• At present, flux estimates are imprecise because K versus S_i relations have been measured for only a few stratigraphic horizons, and unsaturated K estimates are subject to large uncertainty and potential error.
Conclusions
(continued)

• The calculated flux profiles for boreholes located within and adjacent to the alluvial channels indicate that past recharge has been high relative to previous estimates made for the average flux over the site (generally less than 1 mm/yr)

• The calculated flux profiles display systematic trends, including large-scale reversals in flow direction within and near the bedded air-fall units, that suggest the occurrence of lateral flow
Implications

- An understanding of the microstratigraphy is essential to understanding the observed saturation profiles.

- Flow within the upper part of the unsaturated zone is neither one-dimensional nor steady state. Numerical models that do not allow for transient behavior and multi-dimensional flow will not be able to reproduce the observed water potential or saturation data in the upper part of unsaturated zone.
Outline

Study Objectives

Site Processes

Possible Methods of Flux Estimation

Examples of Recent Work

Conclusions
Conclusions of Study

• Process-oriented models, particularly fracture network models, can play an important role in developing conceptual models of percolation through variably saturated fractured rock, and reveal potential limitations of both porous media equivalent models and field data.

• Uncertainty exists in all approaches to characterizing percolation. Multiple approaches involving numerical modeling at different scales, hydrologic testing, geologic characterization, geochemistry, and in situ monitoring are necessary to provide constraints on possible percolation fluxes.