U.S. DEPARTMENT OF ENERGY
OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT

NUCLEAR WASTE TECHNICAL REVIEW BOARD
PANEL ON STRUCTURAL GEOLOGY & GEOENGINEERING

SUBJECT: COSMOGENIC HELIUM DATING STUDIES

PRESENTER: DR. JANE POTHs

PRESENTERS TITLE AND ORGANIZATION: GEOCHEMIST
LOS ALAMOS NATIONAL LABORATORY

PRESENTERS TELEPHONE NUMBER: (505) 665-2636

ALEXIS PARK HOTEL
SEPTEMBER 14 - 16, 1992
Outline

- Conclusions from helium dates
- Background for cosmogenic 3He dating
- Work in progress
- Observation, interpretation, and implication
Conclusions from Helium Dates

- QI_3, QI_4, and QI_5 lavas all erupted about 65 ka ago

- Within the current resolution of this technique (+/- 10ka) QI_3 and QI_5 are the same age

- Numerical age ranges for these lavas are 42 to 98 ka

- Most recent volcanism (cone) was >18 ka ago, but we cannot rule out that it is the same age as the lavas
Outline

- Conclusions from helium dates
- Background for cosmogenic 3He dating
- Work in progress
- Observation, interpretation, and implication
Background for Cosmogenic 3He Dating

- Ideally, the buildup of cosmogenic 3He in a surface sample provides an estimate for the age of eruption.

- Due to effects such as erosion, in practice a surface exposure age is always less than or equal to the eruption age.

- Due to uncertainty in the production rate for cosmogenic 3He, uncertainty in the 3He ages of +/-30% must be assumed when comparing to ages from other techniques.

- Olivine retains cosmogenic 3He quantitatively.
3He Surface Exposure Ages for Lathrop Wells

Sample

- Cone (Bombs)
- Lavas
 - QI$_3$
 - QI$_4$
 - QI$_5$

"Age" (ka)
Retention of Cosmogenic 3He in Olivine

The diagram shows the retention of cosmogenic 3He in olivine samples from Potrillos and Lathrop Wells, compared to predicted values. The data points are labeled with sample IDs and the horizontal axis represents the year of sampling.
Outline

• Conclusions from helium dates
• Background for cosmogenic 3He dating
• Work in progress
• Observation, interpretation, and implication
Work in Progress

At Lathrop Wells

- Multiple surfaces of QI\textsubscript{3}, QI\textsubscript{4}, QI\textsubscript{5} have been collected to look at reproducibility/reliability of He ages

- In-place bombs from the side of the cone, unlikely to have had significant cover over their lifetime

- Will collect and analyze QI\textsubscript{6} and spatter mound
Work in Progress
(Continued)

Cross calibration to other chronometers

• We are searching for well-dated lavas in the Western U.S.

Zuni-Bandera flow near Grants, NM

• 14C ages on charcoal: 9.1 ± 0.08ka and 9.8 ± 0.06ka.
 Cosmogenic He: 13.0 ± 1.3ka (analytical precision)

Bluewater flow near Grants, NM

• Uranium series disequilibrium age of $80 (\pm 20/-15)$ka
• 2 Ma K-Ar age
Outline

• Conclusions from helium dates
• Background for cosmogenic 3He dating
• Work in progress
• Observation, interpretation, and implication
Observation:

- Isotopic composition of Ar released by crushing olivine:

 $^{40}\text{Ar}/^{36}\text{Ar}$

 $Q_{l_3}: 328 \pm 7$
 $Q_{l_5}: 371 \pm 8$

 Air Ar: 295.5
Interpretation:

- These lavas contain excess 40Ar that is not due to in situ decay of 40K

Concentrations released by crushing olivine:

$Q_{I3}: 5 \pm 1 \times 10^{-9}$ cm3STP/g of excess 40Ar
$Q_{I5}: 7.3 \pm 0.6 \times 10^{-9}$ cm3STP/g of excess 40Ar

Expect 10×10^{-9} cm3STP/g of excess 40Ar from decay of K in bulk rock (1.8% K) in 130ka. Note, however, that olivine makes up only 2% of the rock as microphenocrysts. May be more important in groundmass. Glass phase unknown
Implication:

- Need to know more about the distribution of this excess (mantle) Ar component between minerals before we can believe (or disbelieve) the K-Ar and $^{40}\text{Ar}/^{39}\text{Ar}$ ages