U.S. DEPARTMENT OF ENERGY
OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT

NUCLEAR WASTE TECHNICAL REVIEW BOARD
PANEL ON STRUCTURAL GEOLOGY & GEOENGINEERING

SUBJECT: SUMMARY OF LATHROP WELLS STUDIES: PROGRESS AND FUTURE DIRECTION

PRESENTER: DR. BRUCE CROWE

PRESENTER'S TITLE AND ORGANIZATION: PRINCIPAL INVESTIGATOR, VOLCANISM STUDIES
LOS ALAMOS NATIONAL LABORATORY
LAS VEGAS, NEVADA

PRESENTER'S TELEPHONE NUMBER: (702) 794-7096

ALEXIS PARK HOTEL
SEPTEMBER 14 - 16, 1992
Lathrop Wells Center
Summation of Studies

Presented series of overview talks

• Individual investigators
• New data, new interpretations
• Not done but progressing (pleased, even excited about results)
• Resolve differences with data
 it is working
Continued difficulties with K-Ar and $^{40}\text{Ar}/^{39}\text{Ar}$ data

- **Problem:** data interpretations, not analyses or methods
 - Data range: too large for analytical error
 - Non-gaussian distribution
 - Positively skewed
 - Influential cases in regression calculations
 - Selective removal of samples
 - Improper use of weighted mean
 - Excess Ar

- **Future directions:**
 - Upper Bound age of center (>150 ka)
 - QA data set
 - $^{40}\text{Ar}/^{39}\text{Ar}$ ages of lithic fragments
 - More careful definition of assumptions, uncertainty data
 - Mineral separations
$^{40}\text{Ar}/^{39}\text{Ar}$ Ages of the Bandelier Tuff Lower Member
Spell et al. (1990)

Normal Probability Plot (SYSTAT Version 5.0)
$^{40}\text{Ar}/^{39}\text{Ar}$ Ages of the Bandelier Tuff Upper Member
Spell et al. (1990)

Normal Probability Plot (SYSTAT Version 5.0)
$^{40}\text{Ar}/^{39}\text{Ar}$ Ages: Lathrop Wells Center
Turrin et al. (1991)

Normal Probability Plot (SYSTAT Version 5.0)
Comparison of Variance Weighted Data Sets

40^Ar/39^Ar Method

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Cases</td>
<td>40</td>
<td>36</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Minimum</td>
<td>-20</td>
<td>-20</td>
<td>1.08</td>
<td>1.4</td>
</tr>
<tr>
<td>Maximum</td>
<td>947</td>
<td>392</td>
<td>1.18</td>
<td>1.6</td>
</tr>
<tr>
<td>Mean</td>
<td>211</td>
<td>162</td>
<td>1.13</td>
<td>1.49</td>
</tr>
<tr>
<td>Median</td>
<td>186</td>
<td>149</td>
<td>1.13</td>
<td>1.50</td>
</tr>
<tr>
<td>Variance</td>
<td>34647</td>
<td>8222</td>
<td>.001</td>
<td>.002</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>186</td>
<td>91</td>
<td>.028</td>
<td>.048</td>
</tr>
<tr>
<td>Skewness (G1)</td>
<td>2.3</td>
<td>0.5</td>
<td>-0.5</td>
<td>-.31</td>
</tr>
<tr>
<td></td>
<td>ka</td>
<td>ka</td>
<td>Ma</td>
<td>Ma</td>
</tr>
</tbody>
</table>
Lathrop Wells Center
Summation of Studies

U-Th disequilibrium

- Problems:
 - Analytical problems overcome
 - Mineral separations
 - Expensive, time-consuming measurements

- Future directions:
 - Decision on utility of method -- next few months
Cosmogenic He age determinations

- Problems:
 - Minimum ages
 - Calibration of production rate
 - Age of main cone

- Future directions:
 - Technique looks promising
 - QA hurdles overcome
 - 65 ka convergence?
 He, ^{36}Cl, K-Ar mineral separations

Resolution = More data

Calibration Sites
Lathrop Wells Center
Summation of Studies
(Continued)

Thermoluminescence

- Experiment Snake River Plains: good results < 30 ka
- Reproducible numbers
- Problems:
 - Calibration > 30 ka
 - Inconsistent with 3He (Forman not satisfied with sample)
 - Coarse sand

- Future directions:
 - Experiments to test applications of method
 - Understand mechanisms of young ages
 - Calibration sites for comparison
Significance of Lathrop Wells Studies
Are the Different Interpretations Important?

Eruption models: monogenetic versus polycyclic

- Both models require multiple events
- Repository perspective:
 - Semantic versus substance
 - Multiple pulses

Key => Polycyclic model factored into E3

- Sufficient merit to polycyclic model to continue testing
 - Paleomagnetic data is inconclusive
 - Must examine all models, particularly conservative models
 - Timing of multiple events still unknown
Summary of Lathrop Wells Studies
(We are Getting There)

• Encouraged by progress
 - Somewhat slow but steady
 - End is in sight; particularly with access to quarry property
 - Analogous features at other volcanic centers
Summary of Lathrop Wells Studies
(We are Getting There)
(Continued)

• Investigators must be objective about results
 - Point out strengths and weaknesses of methods
 - Separate constraints, assumptions, speculations
 - Propose, test, revise...(repeat)

• Plea for professional objectivity
 - Maintain perspective of risk impact
 - Obtain fully qualified data
 - Be prepared to accept bounds versus resolution
 - Differences of opinion are healthy
 * Alternative models important for the YMP
 - Differences can be established without polarization
FY 93 Priorities

- Geochronology studies
 - Continue (possibly wrap-up) Lathrop Wells studies
 - Detailed studies
 -- Sleeping Butte
 -- Crater Flat

- Field studies
 - Crater Flat mapping
 - Volume calculations
 - Pliocene Centers

- Probability studies
 - Issue resolution: major emphasis
 - E1-E2 tables

- Effects
 - Field analogues
 - E3 constraints

- Review of Geophysical data