U.S. DEPARTMENT OF ENERGY
OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT

NUCLEAR WASTE TECHNICAL REVIEW BOARD
FULL BOARD MEETING

SUBJECT: TOTAL-SYSTEM PERFORMANCE ASSESSMENT EXERCISE (TSPA-91) PROBLEM DEFINITION

PRESENTER: DR. HOLLY A. DOCKERY
PRESENTER'S TITLE AND ORGANIZATION: SENIOR MEMBER TECHNICAL STAFF SANDIA NATIONAL LABORATORIES ALBUQUERQUE, NEW MEXICO
PRESENTER'S TELEPHONE NUMBER: (505) 844-1756

DALLAS, TX
APRIL 7-8, 1992
Outline

- Scope
 - PNL/SNL common data set
 - Retardation
 - Boundary conditions
Scope of the Total System Performance Assessment (TSPA)

- Groundwater Flow
 - UZ Composite-Model Transport
 - (SZ) Weeps-Model Transport
 - UZ Transport

- Gas Flow
 - Surface Release

- Human Intrusion
 - Surface Release
 - DirectSZ Release

- Basaltic Volcanism
 - Surface Release

- Tectonism
 - Water Table Rise
 - Gas Flow in Fractures
Conditions Modeled for Yucca Mountain

- Undisturbed Conditions
- Basaltic Volcanism
- Human Intrusion
- Climate Change
Expansions on Previous Exercises

- More phenomena modeled
- Releases calculated to AE along 2 paths
- More sophisticated source term used
 - Better understanding of water contact modes
 - Computationally simpler
 - Larger suite of nuclides incorporated
- Stochastic simulations performed
- Some sensitivity studies performed
- Results used in dose calculations
Outline

- Scope
 - PNL/SNL common data set
- Retardation
- Boundary conditions
Common Factors

- SNL and PNL common data:
 - Stratigraphic cross section
 - Geohydrologic parameters and distributions
 - Suite of radionuclides
 - Boundary conditions
Aqueous Flow Problem Domain

- Horizontal domain
 - UZ modeled from H-5 to 500m east of UE-25a#1
 * Representative of entire repository
 * Area chosen for availability of data
 * Section includes Ghost Dance Fault (14-m offset)
 - SZ extends from beneath repository to accessible environment (5km)
East-West Transect Used for the TSPA

- TSPA Transect
- Ghost Dance Fault
- Outline of Potential Repository
- Points: H-5, G-4, UE-25 a#1

Scale (km): 0, 0.5, 1, 2
Aqueous Flow Problem Domain

- **Vertical Domain**
 - Aqueous flow and tectonism
 * Top of repository to water table
 - Human intrusion
 * Surface to saturated zone
 - Volcanism
 * Repository to surface
Release Pathways

volcanism
gas flow
human intrusion

Repository

aqueous flow
tectonism

human intrusion

Water Table
Tuff Aquifer
Carbonate Aquifer

Surface
Stratigraphy

- Unsaturated zone--5 layers
 - Number of layers decreased from PACE
 - Simplified from USGS downhole logs
 * Data from USW H-5, UE25a#1, and USW G-4
 * Multiple units lumped together, based on gross characteristics

- Saturated zone--2 layers
 - "Tuff" aquifer
 - "Carbonate" aquifer
Geologic Cross Section Used for TSPA

USW H-5

Ghost Dance Fault

USW G-4

UE-25 a#1

Potential Repository

Welded

Vitrophyre

Vitric

Zeolitic

Partially welded

Water Table
Geohydrologic Data Set Development

- Derived from site and analog data
 - Matrix values from Peters et al., PACE, and analog sites (Apache Leap)
 - Fracture properties from Spengler et al., Zimmerman, and Carsel and Parrish
 - Distributions developed for each parameter

- Provided a long-needed tool for this and subsequent analyses
Geologic Data Set Applications

- Flow and transport calculations:
 - SNL
 * Unsaturated aqueous scenarios
 * Saturated aqueous scenarios
 - PNL
 * All scenarios
Outline

• Scope

• PNL/SNL common data set
 • Retardation

• Boundary conditions
Tuff Retardation Coefficients

- Geochemical information interpreted by Meijer (LANL)
 - Rocks subdivided into 3 types: vitric, devitrified, and zeolitic
 * Nuclides with retardation = 0: Tc, I, C
 * Nuclides with retardation = 100: Am, Pu, Sn
 * Nuclides with PDFs: U, Se, Cs, Np
 - Ranges of retardation values established for the range of pH values in J-13 water
 * Oxidizing conditions assumed
Carbonate Retardation Coefficients

- Carbonate-aquifer retardation values based on data from Waste Isolation Pilot Project (WIPP) (Culebra Dolomite)
 - Matrix values only
 - Water chemistry
 * Oxidizing conditions assumed
 * Chlorides assumed to have no effect on K_ds
 - PDFs for all nuclides except for Tc, I, and C
Outline

- Scope
- PNL/SNL common data set
- Retardation
- Boundary conditions
Boundary Conditions

- Lateral boundaries--no flow for 2D

- Run from initial saturation and flux to steady-state for specified percolation

- Range for flux at the repository horizon = 0.0 - 39.0mm/yr
 - Range of values allows for climate change
 - Range ensures some calculations exceed threshold for fracture-dominated flow
 - Shape of distribution weighted to low flux values
Distribution of Percolation Fluxes at Repository