EPRI / EEI HLW METHODOLOGY DEVELOPMENT PROJECT

Robert A. Shaw Electric Power Research Institute
EPRI HLW Project Objectives

- To develop an integrated methodology for early site performance assessment and to identify and prioritize crucial issues

- To involve DOE in this methodology development and its implementation
Methodology Development Team
Meetings

- 7/24-25/89: Brainstorming
- 11/28/89: Qualification check
- 12/19-20/89: Problem definition
- 1/15-17/90: Model formulation
- 4/24-26/90: Model presentation
- 7/30-8/1/90: Model completion
Figure 9-1. Example logic tree.
END BRANCH

<table>
<thead>
<tr>
<th>NO.</th>
<th>PROB.</th>
<th>PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>E_1, S_1, H_1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>E_1, S_1, H_2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>E_1, S_2, H_2</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>E_1, S_2, H_2</td>
</tr>
</tbody>
</table>

...

Figure 9-2. Illustration of use of logic tree parameters to form CCDF of cumulative chemical concentration released.
Figure 9.3. Master logic tree for demonstration calculations.
Technical Issues

- Keeping in mind that the MDT results are illustrative, the following are found to be more influential on site performance:

 - Hydrology
 - Infiltration (recharge) from precipitation
 - Water flow pathways
 - Influenced by extent of rock fracture and porosity
 - Significant rise in water table

 - Geochemistry
 - Uranium solubility, as influenced by dissolution chemistry and temperature
 - Chemical retardation of released radioisotopes

Conclusions

The use of multi-disciplinary scientific and engineering expertise to conduct a risk-based evaluation of a HLW repository is achievable with current knowledge and technology.

- A structured approach is required; the workshop format is suited to this approach.
- The use of logic trees is a convenient and credible format.
- Results of the methodology should be obtained during the process of model development, i.e., the process should be iterative.

A methodology of this type can be applied on a larger scale, in which a larger body of expertise participates. This application will lead to realistic (rather than simple demonstrative) results.
Near-Term Plans

• Prepare working version of Methodology Development Team performance assessment model and report (9/90)

• Phase 2: Join with DOE in sponsorship of workshops on performance assessment methodologies to identify crucial technical topics for workshops

• Phase 3: Support DOE in conducting expert workshops on crucial technical topics identified in Phase 2

Phase 2

• Series of workshops on performance assessment methodologies
 — Participants
 - DOE YMPO contractors
 - DOE HQ Contractor, Golder Associates
 - NRC
 - EPRI/UWASTE’s Methodology Development Team
 — Objectives
 - Exchange detailed explanations of each P/A methodology
 - Revise methodologies where appropriate
 - Obtain consensus on highest priority technical areas
 — Schedule
 - Series of 3 workshops starting in late '90 with completion in '91
Phase 3

- Series of workshops on highest priority technical areas identified in Phase 2
 - Sponsored by DOE
 - Used by EPRI to update and revise P/A methodology
 - One to three workshops per year
 - Significant independent technical expert input to DOE

Roles of Respective Parties in Performance Assessment Methodology

<table>
<thead>
<tr>
<th></th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPRI</td>
<td>major</td>
<td>major</td>
<td>minor</td>
</tr>
<tr>
<td>UWASTE</td>
<td>major</td>
<td>major</td>
<td>supportive</td>
</tr>
<tr>
<td>DOE</td>
<td>supportive</td>
<td>minor</td>
<td>major</td>
</tr>
</tbody>
</table>