U.S. DEPARTMENT OF ENERGY
OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT

PRESENTATION TO
THE NUCLEAR WASTE TECHNICAL REVIEW BOARD

SUBJECT: ALTERNATE WASTE PACKAGE MATERIALS CONCEPTS

PRESENTER: WILLIS L. CLARKE

PRESENTER'S TITLE: METALLURGICAL ENGINEER
AND ORGANIZATION: LAWRENCE LIVERMORE NATIONAL LABORATORY
LIVERMORE, CALIFORNIA 94550

PRESENTER'S TELEPHONE NUMBER: (415) 423-4803

JANUARY 18-19, 1990
Reasons for an Alternate Materials Program

- Meets a regulatory requirement [10 CFR 60.21 (c)(1)(ii)(D)].

- Protects against a different set of environmental circumstances
 - More water
 - More aggressive water chemistry.
 - Higher loads.

- Performance assurance
 - Containment and release requirements may not be met by metal barrier.

- Provides licensing conservatism
 - Redundant design.
Alternate Container Material Selection

- Screening of concepts.
- Criteria development.
- Degradation mode surveys.
- Parametric testing.
- Selection.
- Performance testing and development of models for performance assessment.
Accomplishments

• SIP written and approved.
• SIP revised to 1988-89, Rev. 2 QA plan.
• Activity plan written.
 – QALA’s assigned and graded.
• Ceramic studies initiated
 – Workshop conducted.
 – Trip to Sweden to review their container progress.
 – Candidate manufacturer survey completed.
 – Closure study started
 – Closure model report written.
• Graphite workshop conducted.
• Prepared to reassign task to M&O
 – Prepared turn over package.
Alternate Container Material Concepts Considered

- Ceramics.
- Graphites.
- Bimetals.
- Single metals.
- Coatings.
- Fillers.
- Thicker wall metals. – e.g. Canada 4" thick copper compare 3 cm
Ceramic

- Primary candidates include alumina and titania.
- Both alumina and titania have superior corrosion resistance than metals.
 - Swedish immersion tests
 - $<1 \text{ mm per 10,000 years for alumina.}$
 - $<10^{-12} \text{ mm per 10,000 years for titania.}$
- Delayed failure due to defects can be eliminated by minimization of residual stress during fabrication and closure.
- Fabrication technology and mass production of high quality alumina is well understood.
- Closure is major concern, but fabrication of containers from either alumina or titania appears feasible.
Ceramic Study

- Alumina and Titania.
- RFP issued
 - Fabricate half-scale demonstration containers.
 - Specifications and drawings prepared.
- LLNL closure studies initiated.
 - Requisitions placed for parts and supplies.
- Preliminary NDE study initiated.
 - Concerns:
 - Residual stress.
 - Voids.
 - Defects.
- Preliminary HIP study for closure initiated.
 - Localized heating.
 - Non-uniform thermal stress.
 - Compressive pressures.
 - Up to 30 KSI available for closure.
Candidate Ceramic Manufacturer Survey

• Six U.S. alumina fabricators contacted
 - GTE Wesgo.
 - McDaniel Refractory Company.
 - Industrial Materials Technology.
 - International Pressure Services.
 - Coors Ceramics.
 - ABB Autoclave Systems.

• Favorable response for the feasibility of fabricating half-size alumina or graphite containers.

• Received commitments from these fabricators for long-term participation.
LLNL Ceramic Closure Study

- High quality closure at temperatures <650°C are feasible.
 - Lower temperatures are necessary to protect spent fuel package.

- 30 KSI pressure using HIP is a key factor in closure consideration.

- For metal to ceramic closure single phase bonding is important.

- Matching of thermal expansion is necessary.

- Developed two closure techniques.
Graphite Workshop

 - 25 Participants.
 - 16 From outside LLNL.

- Issues considered:
 - Aqueous corrosion and oxidation resistance.
 - Mechanical strength and fracture toughness.
 - Remote handling and closure.
 - Permeability to gasses and liquid water.
 - Fabrication, cost, and availability.
 - Annual allowable container failure rates.
 - Fire safety resistance.
 - Irradiation effects.

- Graphite should be considered.
 - Studies should be initiated.
Bimetals

- Double-walled container fabricated separately (or by diffusion bonding) using standard techniques.

- Outer (anodic) liner provides containment at high temperatures and gamma dose rates. Inner (cathodic) liner provides long-term stability at low temperatures and gamma dose rates.

- Possible candidates include nickel and iron-base alloys versus copper alloys, and mild or low alloy steel versus a nickel-base alloy.

- Must predictably resist galvanic attack and localized corrosion.

- Considered a promising alternative concept.
Single Metals

- Single-wall container of similar configuration to present container candidate materials.
 - Interpretation of containment requirements may change.
 - More in-depth knowledge of degradation mode scenarios
 - e.g. MIC.
 - Closure process may indicate some problems with some materials.
 - Technological advancements.

- Possible candidates include Monel, Titanium Alloys, and Hastelloys (e.g. C-22).
Coatings

- Protective corrosion-resistant layers applied or deposited directly onto the inside or outside wall of the container.

- Possible candidates include ceramics (oxides or nitrides) and metallics (aluminum or Ni-Cr-Al).

- Must demonstrate closed porosity and substrate adherance and possess crack and corrosion resistance.
Fillers

- Continuous or discontinuous solids that fill the void spaces within a container to provide mechanical support and load damping.

- Also provides long-term protection against corrosion and radionuclide release in the continuous form.

- Possible candidates include magnetite, glass, aluminum, copper, lead, and zinc.

- Must demonstrate compatibility, wetability, and void detectability.
Summary

• A container materials alternate concepts program was established.

• A turn over package was prepared for reassignment of the program to an M&O.

• Planning documents are in place to conduct the program under 1988-89, Rev. 2 QA Plan.