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Comments and discussion on reference material — emphasis on magma-rock
Interactions

Ascent to repository level
Entry into drifts

Effect on drift(s)

Egress from drift(s)
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Ascent to Repository Horizon
e Rotation of field stresses
o Effect of topography
¢ Role of structure (as stresses rotate)

¢ Anticipated maximum magma overpressures




Dike Ascent Mechanisms
Ascent Conditions: pn>si

T win = Thermal Freezing

3% = 7
G /(1—v)
_—— _—\ A Kierie >K1 = (pm — Sh)\/z

1. Driven by buoyancy contrast (Woods et al, 2001)
P magma = 2600kg / m’
{pm =2400-2940kg / m’
T L builds to 20 MPa over 30 km
Note p,,., of 2260—2940 kg /m’ gives neutral buoyancy

}Ap =70kg / m’ or 0.7 MPa/ km

2. Will build to maximum magma pressure only as:
1. Conduit losses diminish (static system)
' [1m dike at 1 m/s loses 0.1 MPa/km]

2. Tip process-zone allows

L(km) (Pm - Sh)(MPa)
30 0.006
5 0.014
0.03

For K« =1 MPa m”:
(e.g. Rubin, 1995)




Yucca Mountain — Schematic Thermal Rock Mechanics
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Thermal and Quasi-static Stresses
Warm-up
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In Situ Stress Profiles
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e Mountain-scale vertical
stress will change little
with heating or cooling of
repository

e High horizontal stresses
develop at thermal
maximum

e Magma pressures and
over-pressures limited by
rock strength at
mountain-scale.
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Mountain-Scale Effects

Issues:
< 1.  Over-pressures limited by failure of the
host rock.
P i - N 2. Thermal stresses in repository horizon will
rd o be significant in the maximum thermal
: Ghost Dance B " .
- / Repository wly/ o7 Ty -f—‘-—_::,-—-’_—- perIOd

Bow Ridge

SO fault . Vertical stress becomes minimum
S principal stress (65y — 2000y)

Vertical stress =
L.east horizontal stress

Solitario
Canyor . . .
. Barrier zone is thin. Order 40m

Region of vertical

3 least principal stress . Weak extensional zone below
B 1 i repository
Regional least principal B B ropagating
o ,,____,,.__‘L_Nﬂ\zf_«ﬁ;im_e_;s‘,’,__._.j.-- s il . As S, and S, become closer
X | Dike e e st st structural controls (faults) may
— assume a larger role on intrusive
Mugma prOCESSGS

o1, 02, Gy Principal stresses
(323 Least principal stresses

W 3.  Topographic effects of adjacent Crater-
Flats

Source: Integrated Site Model-Disruptive Events Report
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e Control by local stress state

e Anticipated magma overpressures




Drift Stresses
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Drift-wall Stress Schematic Static Dynamic
dp=0 dp=40 MPa
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Drift-local Behavior
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Drift Stresses — Warm-up and Cool-down

Static:dp =0 Dynamic: dp = 40 MPa

N

4+0.25(0-7)=2
A/

3.5 4+R.25(-4+11)=6

18 81m

Implications:

As drift-wall warms — additional compressive hoop stresses build at 0.1 MPa per °C.
Acts to deter ingress.

Dike ingress at invert (dp=0). Progressively more difficult as drift warms.
Gas or magma egress along drift crown (dp>0) and twist until normal to S,
Fracture develops to bleed-off gas pressures

Limiting drift pressure ~ 4 MPa when cold or along favorably aligned pre-existing
fractures




Drift Thermal Stresses — Thermal Maximum

p Static:dp =0 Dynamic: dp = 40 MPa
Average stress
J 15+0.25(22-7)+8=27 40
\l/ V' 7
37+R=95 L 1520.25(-15+0)+8=19 5
Thermal = F <
hoop stress®. % 15
T 748=15
81m
< >
Implications:
Ingress?

Egress along springline (dp > 0) as horizontal or vertical dike
Fractures develop to bleed off gas pressures

Limiting drift pressure ~ 15 MPa. Lower breakout pressures at cooler (and
shallower?) edges of repository.

Analogs on NTS for dynamic wave?
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Effect on Drift(s)
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In-Drift Obstructions
Waste Packages and Drip Shields

Roof-falls following initial pressure pulse and after pressure release

Large enough to rupture drip shields?
Full length of drift affected?

Some dynamic effects on adjacent drifts?

Cross-section Partially Backfilled
- Expansion volume reduced
- Erosion of surface
- Bulldozing extent of pulse
- Protection from roof-fall
Cross-section Fully Backfilled — or bulkheads
- Bulkheads separating packages (TSw2?)
- Stem dynamic expansion and force dike to continue
- Requirements
- Low enough gas permeability to stem expansion

- High enough strength to prevent displacement



Bulkhead “Strength” Constraints

eRadial displacements small. Order of 10mm for
40 MPa overpressure. Therefore rigid
plug also feasible.

*Plug sizing
Blastic o meteg s
astic: G3~1_v61~ G,
I_si
Plastic: o, = S%n¢61z0.361
3 1+sind
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Conduits
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Hot Repository Egress from Drift

Ingress easiest at repository periphery
Stress regime around drifts deters ingress

Egress easiest along original dike intersection

Cold Repository

Dike develops most readily perpendicular to minimum
field stress

Pressurized drift fails first at crown and escape feature
rotates until perpendicular to field stress.




Summarized Observations

¢ Maximum dike overpressures above S_.. expected to be moderated by
rock strength. Likely of the order of less than ~1 MPa

¢ (Cold repository (80% of 10,000 y)
Entry at total magma pressure of 2-5 MPa
Drifts fail at pressure of the order of ~4 MPa
¢ Hot repository (20% of 10,000 y)

Significantly higher entry pressures and exit pressures than for
cold drifts

Can ingress occur?

¢ Backfill or backfill bulkheads could reduce the effects of in-drift
decompression and magma ingress.



