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Purpose and Approach 

 Discriminate between emplacement mode options (drill string vs. 
wireline), according to 

– What accidents could occur and how likely are they during deep-borehole 
emplacement of waste packages 
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 Primary steps/aspects of hazard/risk 
analysis: 
1. Hazard identification and event sequence 

construction (what can happen? – “causes”) 
2. Consequence analysis (what are the 

consequences if it happens?) 
3. Frequency/probability analysis (how likely is it to 

happen?, including uncertainty ranges) 
4. Risk calculation (how bad is it? – product of 

frequency and consequence) 
5. Decision analysis (how should we proceed in 

light of the risk?) 
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Level of Consequences  

 Cause ⇒ Event ⇒ Consequence 

 Prevention & Mitigation ⇒ Safety Functions/Barriers in the 
Design 
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 Level of Consequence in DBEMHA:  
– Loss of operational capability:  “yes/no” 

– Potential waste package breach condition exists:  “yes/no” 
• Similar to consequences in Level 1 NPP PRA:  “core damage yes/no” 

“Bow-tie”  
Diagram* 

* Burtonshaw-Gunn, S. A. 2009.  Risk and Financial Management in Construction, Fig. 3-8, 
ISBN 978-0-5660-8897-1, Ashgate, also Gower at www.gpmfirst.com  

Often used for 
risk analysis in 
the oil industry 
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Some Assumptions & Simplifications 
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 Accident analysis begins subsequent to bolting of shipping cask 
to wellhead (including nothing prior to reaching the site) 

 Only internal events for now (i.e., omit seismic, weather-related, 
etc.) 

 No malevolent acts 

 No simultaneous initiating events (standard PRA practice 
because of low probability and because either event ceases 
operations) 

 Typical risk consequences not considered at this point, such as 
– Personnel risk (e.g., injury or fatality)  

– Environmental risks (e.g., groundwater contamination; biota damage) 
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Wireline Emplacement in Deep Borehole 

6 

Attach cable head to waste package 

Lower waste package 
through BOP and downhole 
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Three categories for failures/errors* 

 Hazardous events can result from either actions (e.g., human acts) or 
component failures (e.g. battery, sensor) or a combination—three major 
categories…. 

 Passive component failures (usually towards the top of a fault tree) 
– Includes components such as the waste package, casing, tubing, and passive BOP components 

– Conditional failure probability (i.e., following a structural or thermal challenge) requires an 
engineering calculation (fragility and damage analysis) using process models, e.g., probability of 
damage/failure from mechanical stress (dropping, bumping), probability of damage/failure from 
thermal stresses (fire) 

 Active component failures: 
– Includes components such as electric cable head release, wireline winch, wireline sheave 

wheels, interlock systems, cranes, active BOP components (rams), UPS, batteries, diesel 
generators, wireline (fatigue), etc. 

– Failure probability (“demand”-based) or failure frequency (time-based) come from industry and 
governmental reliability databases for electro-mechanical equipment 

 Human errors/failures  
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* Also used to classify the “criticality” of minimal cut 

sets, by Rausand and Hoyland 2004, Table 3.2 July 16, 2015 



Choosing a Hazard Evaluation (HE) Method 

 After DOE 1997:  DOE Standard:  Hazard Categorization and 
Accident Analysis Techniques for Compliance with DOE Order 
5480.23, Nuclear Safety Analysis Reports. DOE-STD-1027-92: 
– For a Nuclear Hazard Category 2 Facility (facility with a potential for “significant on-site 

consequences):  
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Type/Complexity of Facility Recommended Hazard Evaluation Method 

Low-Complexity Checklist Analysis or other simple “Hazard Analysis” 

Single-Failure Electro-Mechanical Systems Failure Modes and Effects Analysis (FMEA) 

Systems with Redundant Barriers or 
Requiring Multiple Failures Event Tree Analysis (ETA) 

Large, Moderately Complex Processes Fault Tree Analysis (FTA) 

Complex Fluid Processes Hazard and Operability Studies (HAZOP) 

High Complexity Facilities Integrated Event Tree and Fault Tree Techniques (ETAs/FTAs) 

 
YMP PCSA* 

* Yucca Mountain Project Pre-closure Safety Analysis 

 From: CCPS (Center for Chemical Process Safety) 1992. 
Guidelines for Hazard Evaluation Procedures, 2nd Edition, 
AIChE: 
– “Selecting an appropriate HE technique is more an art than a science” 

– Detailed flow charts and criteria for choosing the best HE method (seven pages) 
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CTM:  Transfers waste 
canister from transportation 
cask to waste package 

Example from Yucca Mountain Pre-Closure 
Safety Analysis (PCSA) 
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 Combines ETA and FTA: 
– Each “pivotal event” (i.e., intermediate event) in the PCSA event sequences was 

decomposed using a fault tree to define its probability of occurrence 

 PCSA used a well-established methodology codified in various NUREGs 
of the U.S. NRC (e.g., see NRC 1983) 

 Example hazardous events associated with Canister Transfer Machine 
(CTM) operations inside the Canister Receipt and Closure Facility (CRCF): 

July 16, 2015 



Example Event Tree/Fault Tree Combination 
for Canister Transfer Machine (CTM) 
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Structural 
Challenge to 

Canister 

Safety barriers/intermediate events → 

End states 

1. OK 

2. Direct exposure, shielding 
loss 

3. Radionuclide release, 
filtered by HVAC 

4. Radionuclide release, 
filtered by HVAC, also 
important to criticality 

5. Radionuclide release, 
unfiltered by HVAC 

6. Radionuclide release, 
unfiltered by HVAC, also 
important to criticality 

 



Preliminary “Structural Challenge” 
Event/Fault Trees for Wireline Emplacement 
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 Generated with SAPHIRE v8.1.24 
 Top and intermediate events in fault 

tree shown in blue; basic events 
shown in purple  

 Probabilities are just placeholders 
Example 

End States 

Draft 



Preliminary “Stuck in Hole” Event/Fault 
Trees for Wireline Emplacement 
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 Generated with SAPHIRE v8.1.24 
 Top and intermediate events in fault 

tree shown in blue; basic events 
shown in purple  

 Probabilities are just placeholders 

Example 
End States 

Draft 



Reliability Failure Databases for 
Frequency/Probability* 
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1. Component failure event databases, e.g.,  
– GIDEP (Government Industry Data Exchange Program) in the U.S. 

2. Accident and incident databases, e.g., 
– WOAD (World Offshore Accident Databank), by DNV (Det Norske Veritas) 
– Oil and Gas UK (co-sponsored by the UK Health and Safety Executive) 
– PSID (Process Safety Incident Database), by AIChE 

3. Component reliability databases, e.g., 
– OREDA (Offshore Reliability Database), by DNV 
– NPRD (Nonelectronic Parts Reliability Database), by RAIC, a DoD center 
– PERD (Process Equipment Reliability Database), by AIChE 

4. Common cause failure databases 
– CCFDB (Common-Cause Failure Database), by the U.S. NRC 

5. Various databases cited in YMP PCSA 

* First four major categories of “hardware” reliability databases are according to 
Rausand and Hoyland (2004), Sec. 14.2.  Also, see Vinnem (2007), Sec. 5.9. July 16, 2015 



Future Work 
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 Generate a more detailed wireline fault tree 

 Generate a detailed fault tree for drill string emplacement 
(see next slide) 

 Refine consequence terminology and detail 

 Determine available accident frequencies and failure 
probabilities that might be applicable to either wireline or 
drill string emplacement operations 

 Convene an expert panel to review fault trees, accident 
frequencies, and failure probabilities 

July 16, 2015 



Thanks for your attention! 
15 



Back-up Slides 
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Preliminary Fault Tree for Drill String 
Emplacement 
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Active Component Reliability Data 
Sources from YMP PCSA* 
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Active Component Reliability Data 
Sources from YMP PCSA (cont.) 
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Active Component Reliability Data 
Sources from YMP PCSA (cont.) 
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Reliability of Downhole Equipment 
George King 2010 – One Day Course (390 pp.) 
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Event Tree Analysis (ETA) 
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 Major steps in an event tree analysis (e.g., after Rausand and 
Hoyland 2004; CCPS 1992), an inductive technique: 

1. Identification of an initiating event 
(hazard) causing the accident or failure  

2. Identification/design of safety functions 
/barriers/procedures to mitigate the 
initiating event—failure of a barrier 
results in an “intermediate” event 

3. Construction of the event tree* 

4. Description of the resulting accident 
event sequences 

5. Calculation of frequencies/probabilities: 
frequency of end state(s) =  

frequency of initiating event  
×  probability of each 
intermediate event 

Example event tree* 

* Taken from Rausand, M. and A. Hoyland 2004.  System Reliabiltiy 
Theory:  Models, Statistical Methods, and Applications, Second 
Edition, John Wiley & Sons, Inc., Hoboken, NJ. 

*Convention:  Upper branches represents success 
(“true”), while lower branches represent failure (“false”).  

End 
States 
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DOE (U.S. Department of Energy) 2008. Yucca Mountain Repository 
License Application Safety Analysis Report. DOE/RW-0573, Revision 1.  

Fault Tree Analysis (FTA)—  
with an example from the YMP PCSA* 
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 Five major steps in an fault tree analysis (e.g., after Rausand and 
Hoyland 2004), a deductive technique: 

* Yucca Mountain Project Pre-closure Safety Analysis 

1. Definition of the problem and the boundary conditions, including definition of “top event” 

2. Construction of the fault tree, backwards from “immediate cause events” (just below top 
event) to a level of “basic events” or causes 

3. Identification of minimal “cut sets”** 

4. Qualitative analysis of the fault tree 

5. Quantitative analysis of the fault tree 

Fault tree for one of the initiating 
events that might compromise a 
canister in the YMP Canister 
Transfer Machine (CTM) 

** Minimal “cut set” = smallest combination of 
basic events (e.g., component failures) 
which, if they all occur or exist, will cause 
the top event to occur 

July 16, 2015 



Strengths of Fault Tree Analysis 
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 Easily combines human and equipment failure (both of which 
are expected to be possible in DBH emplacement) 

 Can be used to derive the probability of complex intermediate 
(“pivotal”) events in an event sequence 

Human Equipment 

DOE (U.S. Department of Energy) 2008. Yucca Mountain Repository License Application 
Safety Analysis Report. DOE/RW-0573, Revision 1.  July 16, 2015 
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Risk/Hazard Analysis Techniques 
 After Matanovic et al. 2014, Risk Analysis for Prevention of 

Hazardous Situations in Petroleum and Natural Gas Engineering: 

• Builds upon Marhavilas et al. (2011), who 
surveyed  400 scientific papers from the 
2000-2009 decade 

• But it is NOT exhaustive; others like BBN 



Potential “Internal” Hazardous Events for Wireline 
Emplacement—based on emplacement steps 
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Event 
Identifier 

Description of Potential Hazardous Event 
(based on sequential emplacement steps) 

Risk Mitigation Measures, Assumptions, and 
Other Notes 

Screening 
decision 

(include/exclude) 
TOP EVENT Loss of control of waste package  include 
Immediate-
cause event Drop waste package during surface operations Risk prevention measure:  Cask/wellhead-safety-

door/blind-ram interlock system include 

Immediate-
cause event Drop waste package during trip into hole  include 

Immediate-
cause event 

Waste package sticks in guidance casing or 
hanger during trip into hole  include 

Basic event 

Prior to attachment of cable head, the operator 
mistakenly opens the lower door on the shipping 
cask instead of the upper one, dropping 
package onto the “safety door” in the wellhead 
below 

Risk prevention measure:  Door/ram/wireline 
hoist interlock system, including a “deadman” lock 
out (in case of loss of power or inadvertent 
energization).  This event is not considered to be 
“loss of control”. 

exclude 

Basic event 
Upper cask door closes accidentally after cable 
head is attached but while lower cask door is 
still closed. 

Risk prevention measure:  A restraint to prevent 
upper door closing is set prior to cable head 
attachment.  Furthermore, the package has “no 
where to go” at this point, so no loss of control 

exclude 

Basic event 
Cable head pulls loose, dropping the package 
on the lower cask door, because operator 
accidentally tried to spool the cable upward 
beyond the range-limiting pin 

Risk prevention assumption: Such a drop within 
the cask would be small and not cause damage 
to the package, the cask, or the lower door. 

exclude 

Basic event Lower cask door closes inadvertently on the 
wireline   include 

Basic event Lower cask door closes inadvertently on the 
waste package  

Risk prevention assumption:  Waste package is 
strong enough to be structurally unaffected. exclude 

Basic event Upper cask door closes inadvertently on the 
wireline  include 

Basic event Wellhead safety door closes inadvertently on the 
wireline  include 
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Event Identifier Description of Potential Hazardous Event 
(based on sequential emplacement steps) 

Risk Mitigation Measures, Assumptions, and 
Other Notes 

Screening 
decision 

(include/exclude) 

Basic event Wellhead safety door closes inadvertently on 
the waste package 

Risk prevention assumption:  Waste package is 
strong enough to be structurally unaffected. exclude 

Basic event BOP closes inadvertently on the wireline  include 

Basic event BOP (blind ram) closes inadvertently on the 
waste package 

Risk prevention assumption:  Waste package is 
strong enough to be structurally unaffected. exclude 

Basic event Bird cage of wireline Risk prevention measure:  Automated speed and 
tension control on wireline winch include 

Basic event Wireline fatigue failure Risk prevention measure:  Schlumberger TuffLINE 
cable include 

Basic event Wireline winch failure  include 

Basic human 
event 

Operator spools waste package “past TD” or 
“past previous waste package” 

Risk prevention measure:  Procedural and 
software controls; “crush box” on bottom of waste 
package 

include 

Basic human 
event 

Operator pushes cable head release button 
prematurely  include 

Basic event 
Electrical-mechanical fail-safe in cable head 
malfunctions and releases waste package 
early 

 include 

Basic event Undetected narrowing of guidance or tieback 
casing or associated hangers 

Risk prevention measure:  Caliper log run prior to 
waste package emplacement trip include 

Basic event Site-wide power failure Risk prevention measure:  UPS battery backup include 

Basic event Cable head fails to release while package is 
at TD May not result in a loss of control exclude 

Basic event 
Cable head releases on trip out with waste 
package still attached, releasing package to 
free fall to the bottom 

Requires a joint underlying event with a very low 
probability, i.e., cable head failed to actuate at TD 
and tension guage does not indicate this extra 
weight on the trip out 

exclude 
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