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State of Stress in the Earth’s Crust:
High Stress Differences Reflect Incipient Frictional Failure
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Borehole stress measurements show that

much of the Earth’s crust is critically
stressed: u=0.6—-1.0 (Byerlee’s Law)

In low porosity crystalline rocks, fault slip
increases permeability: basis for creation

of Enhanced Geothermal Systems
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Modeling shows these MEQs can be
induced by AP, <1 MPa (c.a. 1% above
ambient hydrostatic P )



Relationship between Horizontal Principal
Stresses and Drilling-Induced Failure

Elastic Stress Concentration Around a Vertical Well
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Drilling-Induced Borehole Failure: SAFOD Pilot Hole (granite)
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Most of the U.S. is Under a Compressional Stress Regime
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Depth to Breakout Initiation Breakouts Can Be Huge in

Depth of breakout initiation (km)

trength (MPa) SS/RF Regimes at Drpth >3 km
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High Permeability Damage Zones Associated with Breakouts Could
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Drilling Induced Tensile Fractures Can Be Extensive and
Interact in Complex Ways with Natural Fracture Systems
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Permeability in Low-Porosity Geothermal Systems
Often Dominated by a Few Fractures
Poles to All Fractures Permeable Fractures
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Summary: Borehole Integrity Issues

» Extensive wellbore failure will complicate drilling, completion and

13-3/8" seal installation and could compromise long-term integrity of seals:
guidance * Breakouts become more severe with depth, and can even lead to
tieback complete circumferential borehole failure (esp. in RF stress regime).

Severe breakouts pose major challenges to drilling and completion.

* Breakouts could pose operational challenges when cementing casing and
setting multiple seals in long open-hole interval above canisters.

* High-permeability damage zones produced by breakouts, drilling-induced
tensile fractures and dilated natural fractures could provide “short-
circuit” pathways around seals.

* Increasing temperature after canister emplacement could lead to:

3 km * Increase in compressive hoop stress (Gy4), promoting continued breakout
growth and borehole enlargement/collapse.

* Thermal pressurization of borehole fluids, reactivating nearby faults (esp.
if slightly permeable) and significantly increasing fracture permeability.

e Establishment of hydrothermal convection system, with unknown impact
on permeability evolution and contaminant transport.

e Microcracking due to differential thermal expansion (esp. quartz-rich
rocks), increasing matrix permeability and decreasing rock strength.

* Geothermal drilling experience shows that a few fractures can
dominate permeability in crystalline rock, allowing heat and mass
transport over large distances. How can we be assured that these
high-permeability fractures (or faults) will not be close enough to a
borehole repository to compromise geologic containment?

5 km

After waste in place, but

before removing casing
(Arnold et al., 2011)



