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Licensing and Post-Closure Safety 
Assessment: Outline  

 Basis for Long-Term Isolation 
– Post-Closure Safety Case 

 Regulatory and Licensing Considerations 
– Potential Regulatory Topics 

 DBD Post-Closure System Assessment  
– Conceptual Model 
– Coupled Process Models 
– Performance Assessment (PA) Model 

• PA Model Results 
• Sensitivity Analyses 

 Summary 
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Basis for Long-Term Isolation –  
DBD Safety Case   

 Pre-Closure  
– Safety Analysis 

 Post-Closure  
– Performance Assessment (PA) 

• Repository System Design 
• Regulations and Licensing 
• Features, Events, and 

Processes (FEPs) Analysis 
• Scenario Development 
• PA Model 
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• Arnold et al. (2013, Appendix A) 
• Freeze et al. (2013)  

 



Regulatory and Licensing 
Considerations  

 Pre-Closure / Operational 
– Transportation 
– Construction (borehole and surface facilities) 
– Operations (waste storage, handling, and downhole emplacement) 
– Decommissioning 

 Post-Closure 
– Siting and Site Suitability 

• Nuclear Waste Policy Act of 1982, as amended (NWPA 1983) 
– Separate repository for HLW resulting from atomic energy defense 

activities is possible (NWPA 1983, Section 8(b); DOE 2015)   
• 10 CFR 960 and 963 

– Licensing (NRC) and Environmental Protection (EPA) 
• 10 CFR 60 and 40 CFR 191 - (Generic – 1981 and later amendments) 
• 10 CFR 63 and 40 CFR 197 (Yucca Mountain specific – 2001 and later 

amendments) 
• International (e.g., IAEA Guidelines (IAEA 2011))  
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Regulatory and Licensing 
Considerations – Post-Closure   
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 Licensing and Environmental Protection:  
– Existing regulations for disposal of SNF/HLW (10 CFR 60 and 40 CFR 191) 

could, in principle, be applied to other disposal concepts and/or sites, without 
revision 

• 10 CFR 60 and 40 CFR 191 predate the 1987 NWPA amendment, may be revised 
or replaced in the future 

• 10 CFR 63 and 40 CFR 197 could provide inferences to other concepts and/or sites  
– Specific regulatory topics that may benefit from clarification for deep 

borehole disposal include (Arnold et al. 2013, Appendix A; NWTRB 2015; 
Winterle et al. 2011): 

• Performance Standards  
– Containment/Cumulative Release vs. Dose/Risk 
– DBD Reference Biosphere and Receptor for Dose/Risk 

• Multiple Barriers / Subsystem Performance 
• Retrievability 
• Human Intrusion 
• Licensing (Non-Phased Approach / Multiple Deep Boreholes) 
• Underground Injection (40 CFR 144 to 148)   

 



DBD Post-Closure PA Model 
Development –  Chronology  

Past PA Work (2009 – 2014) 
 Excel Spreadsheet Model 

– Brady et al. 2009, Sections 4 and 5 
 GoldSim-based 1-D Model 

– Wang and Lee 2010, Section 5 
– Clayton et al. 2011, Section 3.4  
– Freeze et al. 2013, Sections 4.3 and 4.4 
– Arnold et al. 2013, Section 4.4 

 
Current/Future PA Work (2015 – future) 
 PFLOTRAN-based 3-D Model 

– Current iteration of development 
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DBD Post-Closure Conceptual Model –  
Components 
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Engineered Barriers 
• Waste forms 
• Waste packages 
• Borehole seals (and 

DRZ)  
 

Robust Isolation  
from the Biosphere 

Natural System 
• Overlying Sediments 
• Crystalline Basement 
− Low permeability and  

long residence time  
− Density stratification 

of saline groundwater 
opposes upward 
convection 

− Geochemically 
reducing conditions 
limit the solubility and 
enhance the sorption 
of many 
radionuclides 



DBD Conceptual Model Overview –      
Single Borehole Undisturbed Scenario  
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 Inventory / Waste Form  
– DOE-managed HLW (Cs/Sr Capsules) 
– Commercial SNF (PWR assemblies) 

 Waste Package 
– Provides operational protection, assumed to 

rapidly degrade after emplacement 
 Post-Closure Release Pathways 

– Undisturbed 
• Up borehole through seals / DRZ 
• To host rock surrounding disposal zone 

– High-permeability pathway to shallow groundwater  

– Disturbed 
• Volcanic/igneous 
• Human Intrusion 

 Biosphere (Dose) 
• Subsurface release to aquifer 
• Pumping from aquifer to surface receptor 
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DBD Conceptual Model –  
Undisturbed Scenario  

– Low permeability (k) and porosity (Φ) 
• k = 1×10-19 m2 (base case), 1×10-16 m2 (high)  
• Φ = 0.01 
• parameterization ongoing (e.g., permeability variation with depth) 

– Ambient reducing geochemical conditions at depth 
– Ambient temperature = 10°C at surface 

• Thermal gradient = 25°C/km (110°C at center of disposal zone) 
• Thermal conductivity = 3.0 W/m°K 
• Specific heat = 790 J/kg°K 

– Salinity and density gradients 
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Arnold et al. 2013,  
Figure 4-3 

 Crystalline Basement Host Rock (assumed to be granite): 



DBD Conceptual Model –  
Undisturbed Scenario  

 Inventory and Waste Form 
Past PA Work 
– 400 PWR assemblies stacked in a 2,000 m zone 

• Radionuclide inventory and thermal output from Carter et al. 
(2012, Table C-1)  

• Waste form degradation = fractional rate 
– slower = 1×10-7 yr-1  

• (mass release: 50% by 4,800,000 yrs; 76% by 10,000,000 yrs)  
– faster = 2×10-5 yr-1  

• (mass release: 50% by 35,000 yrs; 99.9% by 350,000 yrs) 

Current/Future PA Work 
– 1936 Cs/Sr capsules stacked in 1,300 m zone 

• Radionuclide inventory and thermal output from 1335 Cs 
capsules and 601 Sr capsules (SNL 2014) 

• Waste form degradation assumed to be rapid 
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DBD Conceptual Model –  
Undisturbed Scenario  

 Waste Packages 
– Assumed to degrade at time zero (after emplacement) 
– Mobilization of radionuclides from degraded waste form 

 Waste Disposal Zone 
– Decay heat effects calculated with the Regional TH Model: 

• Heat conduction in surrounding crystalline basement rock 
(assumed to be granite) 

• Thermal perturbation in borehole produces thermally-driven 
upward groundwater flow 

– Radionuclide dissolution and transport 
(advection/dispersion, diffusion, sorption, and decay in the 
groundwater 

• Based on ambient reducing geochemical conditions 
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Regional TH Model –  
Past Work 

12 Arnold et al. 2013, Figure 4-4 

SNF (Arnold et al. 2013, Section 4.2.1) - FEHM  
 

Temperature in Disposal Zone  
(4,000 m depth,  r=0.8 m)  

of Central Borehole in 81-Borehole Array 
 

Arnold et al. 2013, Figure 4-5 

 3-D multi-borehole configuration 
 400 PWR WPs per borehole 

(2000 m disposal zone) 
– ~ 240 W/m borehole length 
 Vertical Groundwater Flux  

(at various depths)  
in Central Borehole in 81-Borehole Array 
 

z=-0 m 
 

z=-4,000 m 
 

z=-3,000 m 
 
z=-3,500 m 
 

z=-2,000 m 
 

z=-2,500 m 
 

z=-1,000 m 
 

z=-2,000 m 
 

25-Borehole Array Schematic 



Regional TH Model –  
Current/Future Work 
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HLW (Arnold et al. 2014, Section 3.2.5) – FEHM / PFLOTRAN  
 

Temperature in Disposal Zone  
(4,000 m depth,  r=0.0 and 1.0 m)  

of Single Borehole 
 

Arnold et al. 2014, Figure 3-24 

 3-D single-borehole configuration 
 1936 Cs/Sr capsules in 1 borehole (1,300 m disposal zone)  

– 200–300 W/m borehole length (avg.) (Arnold et al. 2014, Fig 3-2)   
 

z=-0 m 
 

z=-3,700 m 
 

z=-2,700 m 
 

Arnold et al. 2014, Figure 3-23 

Vertical Groundwater Flux  
At Top of Disposal Zone (3,700 m depth)  

in Single Borehole 
 

z=-2,000 m 
 

z=-4,000 m 
 



DBD Conceptual Model –  
Undisturbed Scenario 

 Seal Zone 
– Enhanced permeability (k) in the DRZ/sealed borehole 

• composite k = 1×10-16 m2 (base case), 1×10-12 m2 (high) 
• composite porosity (Φ) = 0.034 (bentonite/seal = 0.35, DRZ = 0.01) 
• composite tortuosity (Ƭ) = 0.324 
• parameterization ongoing (e.g., explicit representation of DRZ and seals) 

– Thermally-induced upward groundwater flux 
– Transport by advection and diffusion (upward and lateral) with sorption and 

decay 
• Advective center of mass moves upward ~ 30 m 

– (0.01 m/yr)(100 yrs)/(0.034 porosity) 
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DBD Conceptual Model –  
Undisturbed Scenario  

 Upper Borehole Zone 
– Release of radionuclides upward in the borehole from 

the Seal Zone to Upper Borehole Zone 
– Transport by diffusion (upward and lateral) with 

sorption and decay to aquifer and/or surface 
 

 Biosphere 
Past PA Work 
– IAEA BIOMASS ERB 1B Biosphere (IAEA 2003)  
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• Pumping of groundwater from Upper Borehole Zone for water supply with 
specified dilution rate and individual consumption rate 

• IAEA Dose Conversion Factors (DCFs) 
Current/Future PA Work 
– Explicit flow and transport modeling in Upper Borehole Zone and 

sedimentary units, including aquifer  
• Pumping of the groundwater from the aquifer for water supply  
• IAEA Dose Conversion Factors (DCFs) 
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 Deterministic (129I kd = 0 ml/g)  
 Faster WF degradation (2×10-5 yr-1)   
 Granite k=10-19 m2, Seal/DRZ k=10-16 m2 

 SNF (400 PWRs) 
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(Freeze et al. 2013)  
  Probabilistic (129I kd = 0-13 ml/g)  

 Slower WF degradation (1×10-7 yr-1)  
 Granite k=10-19 m2, Seal/DRZ k=10-16 m2 

 SNF (400 PWRs) 

(Clayton et al. 2011)  
 

Clayton et al. 2011, Figure 3.4-9 

Freeze et al. 2013, Figure 4-8 

129I  
 



DBD PA Model Results – Sensitivity  
 

17 

Freeze et al. 2013, Figure 4-31 

Freeze et al. 2013, Figure 4-32 

Freeze et al. 2013, Figure 4-33 

Waste Form 
Degradation Rate 

129I kd in  
Disposal Zone 

129I kd in  
Seal Zone 

 Sensitivity of 129I Annual Dose 
– Faster transport than 135Cs, 

137Cs, or 90Sr   

(Freeze et al. 2013)  
 



DBD PA Model Sensitivity –  
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Clayton et al. 2011, Figure 3.4-9 
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Arnold et al. 2013, Figure 4-19 



Summary  

 Past PA Model results suggest minimal radionuclide releases/dose 
– Results are sensitive to: 

• waste form degradation rate 
• radionuclide sorption (kd) 
• granite and seal permeability 
• thermally-induced upward flow (waste thermal characteristics) 
• waste package degradation  

 Future PA Model enhancements 
– Full consideration of features, events, and processes relevant to potential 

release pathways and scenarios (e.g., PFLOTRAN implementation) 
– Incorporation of more detailed modeling, including coupled processes 

• Seal and DRZ conceptualization 
• Coupled thermal-hydrologic-mechanical-chemical behavior near the borehole 

– Refinement of parameter values 
• Cs/Sr capsule waste form 
• Data from DBFT 
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Regulatory and Licensing 
Considerations – Post-Closure   

 Siting 
– No disposal options for commercial SNF/HLW other than Yucca 

Mountain are possible without amending the Nuclear Waste Policy Act 
(NWPA 1983) 

– Separate repository for HLW resulting from atomic energy defense 
activities is possible (NWPA 1983, Section 8(b); DOE 2015)   

– NWPA (1983, Sec. 112-120) and 10 CFR 963 provide technical and 
administrative guidance on site suitability and site characterization 
activities specific to Yucca Mountain 

• Could, in principle, provide insights to siting for other SNF/HLW disposal 
concepts and/or sites 
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Potential Regulatory Topics   

 10,000-Yr Performance Standards (10 CFR 60 and 40 CFR 191) 
– 40 CFR 191.13 Containment Standard 

• cumulative releases of radionuclides to the accessible environment   
– Release limits normalized to initial inventory (no benefit for smaller repositories)  
– Cumulative limits remove uncertainty associated with exposure pathways and future 

human lifestyles  
• includes consideration of human intrusion  

– 40 CFR 191.15 Individual Protection Standard (undisturbed only) 
– 40 CFR 191.24 Groundwater Protection Standard (undisturbed only) 

 1,000,000-yr Performance Standards (10 CFR 63 and 40 CFR 197) 
– 40 CFR 197.20 Annual Dose Standard for Individual Protection 

• 10,000-yr (15 mrem/yr) and 1,000,000-yr (100 mrem/yr) limits 
– 40 CFR 197.25 Human Intrusion Standard (separate standard) 
– 40 CFR 197.30 Groundwater Protection Standard (10,000-yr only) 

 New standards are likely to be Dose/Risk-based to 1,000,000 yrs  
– Consistent with IAEA guidelines (IAEA 2011) and the National Academy 

of Sciences (1995) recommendations on Yucca Mountain standards 
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Dose vs. Cumulative Release 
Standards  

24 

 Dose 
– Emphasis on low annual dose/risk 
– Can be open-ended in time (or to 

peak dose) 
– Uncertainty in human behavior 

(e.g., water use and diet) is large 
– Encourages dilution and gradual 

release as well as isolation 
– Encourages smaller initial 

inventories 

 Cumulative Release 
– Emphasis on isolation 
– Meaningful only for specified 

time period 
– Allowable limit is a function of 

time 
– Focuses on uncertainty in barrier 

system performance 
– No benefit for dilution 
– Normalization to initial inventory 

(as in 40 CFR 191) removes 
incentive for smaller repositories 

 



Potential Regulatory Topics    

 Multiple Barriers / Subsystem Performance 
– 10 CFR 60.113(a) 

• Substantially complete containment in waste packages for not less than 300 years 
• Release rate of any radionuclide from the engineered barrier system shall not exceed 

one part in 100,000 per year of the inventory of that radionuclide at 1000  years 
• Groundwater travel time to the accessible environment along the fastest path shall be 

at least 1,000 years 
– 10 CFR 63.113(a) 

• “The geologic repository must include multiple barriers, consisting of both natural 
barriers and an engineered barrier system.” 

– A deep borehole disposal system includes engineered barriers (waste form, 
waste package, seals, liner/casing) 

• Current design (waste package does not provide any post-closure isolation) may be 
satisfy engineered subsystem requirements in 10 CFR 60.113(a) 

• 10 CFR 60.113(b) states “On a case-by-case basis, the Commission may approve or 
specify some other radionuclide release rate, designed containment period or pre-
waste-emplacement groundwater travel time, provided that the overall system 
performance objective, as it relates to anticipated processes and events, is satisfied.”  
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Potential Regulatory Topics  

 Retrievability 
– 40 CFR 191.14(f) 

• “Disposal systems shall be selected so that removal of most of the wastes is 
not precluded for a reasonable period of time after disposal.” 

– 10 CFR 60.111 (and 10 CFR 63.111) 
• “(1) The geologic repository operations area shall be designed to preserve the 

option of waste retrieval throughout the period during which wastes are being 
emplaced and, thereafter, until the completion of a performance confirmation 
program … To satisfy this objective, the geologic repository operations area 
shall be designed so that any or all of the emplaced waste could be retrieved 
on a reasonable schedule starting at any time up to 50 years after the waste 
emplacement operations are initiated, unless a different time period is 
approved or specified by the Commission.”  

– 10 CFR 60.46(a) “… an amendment shall be required …”  
• “[for any] action which would make emplaced high-level radioactive waste 

irretrievable or which would substantially increase the difficulty of retrieving 
such emplaced waste”   
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Potential Regulatory Topics  

 Retrievability (cont.) 
– EPA noted when promulgating 10 CFR 191 in 1985: 

• “The intent of this provision was not to make recovery of waste easy or cheap, 
but merely possible… .”   

– NEA (2001) noted: 
• “The introduction of provisions for retrievability must not be detrimental to long-

term safety.  Thus, for example, locating a repository at a depth that is less 
than optimum from a long-term safety perspective in order to facilitate retrieval 
is unlikely to be acceptable….” 

– Prior to sealing, intact waste packages could potentially be retrieved 
from a cased borehole 

– After sealing, large-diameter core drilling has the potential for “waste 
recovery”, at least for relatively narrower-diameter boreholes. 

– “… deep borehole systems may not be the best choice if permanent and 
irreversible disposal is not intended.” (Brady et al. 2009) 
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Potential Regulatory Topics  

 Human Intrusion 
– 40 CFR 191 and 197 are specific to mined repositories 

• Single borehole – may be reasonable to assume low probability of intrusion 
• Multiple boreholes – may require further analysis  

 Licensing  
– Existing regulations contain an implicit assumption that a repository 

system will be licensed and constructed as a single unit 
– Need to consider approaches to licensing multiple boreholes 

• License full multi-borehole system prior to waste emplacement? 
• Follow licensing approach for reactors? 

– Phased licensing may not be applicable because emplacement may 
take place in months/years rather than decades (Winterle et al. 2011) 

•  Single license application (e.g., construct and operate)?  
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Potential Regulatory Topics  

 Underground Injection (40 CFR 144 to 148) 
– EPA requirements for the Underground Injection Control (UIC) program 

promulgated under the Safe Drinking Water Act 
– Focus is on subsurface injection of fluids, but may apply to deep 

borehole disposal 
– 40 CFR 144.6(a) includes as a Class I injection well:  

• “(3) Radioactive waste disposal wells which inject fluids below the lowermost 
formation containing an underground source of drinking water within one 
quarter mile of the well bore” 

– Permitting authority varies from state to state 
– In its 1993 repromulgation of 40 CFR 191, EPA determined 

• “that nuclear waste disposal systems should not be considered underground 
injection” (58 FR 66407).  

–  Compliance with 40 CFR part 144 was considered for WIPP  
• DOE concluded that emplacement in WIPP did not constitute “injection” (DOE 

1996, BECR Section 8.1) 
– Need further guidance from EPA to determine whether canistered solid 

or granular HLW can be excluded from UIC 
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DBD PA Computational Model –  
Past Work (GoldSim)  

30 

 Thermal energy 
from decay heat 

 Heat conduction 
 Multiphase flow 

Input Parameter Distributions 

 
 

 Radionuclide Source Term 
• Waste Form Degradation 
• Radionuclide Solubility 

 1-D Flow and Transport 
• Advection and Diffusion 
• Sorption and Decay 

 Biosphere 
• Aquifer dilution 
• Pumping and Individual Uptake 

 LHS Sampling, Sensitivity Analysis 

Results 
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DBD PA Computational Model –  
Current/Future Work (PFLOTRAN)  

31 

Input Parameter Distributions 

 
 

 Radionuclide Source Term 
• Waste Form Degradation 
• Radionuclide Solubility 

 3-D Thermal-Hydro-Chemistry 
• Thermal Effects 
• Advection and Diffusion 
• Sorption and Decay 

 Biosphere 
• Aquifer flow and transport 
• Pumping and Individual Uptake 

 

Results 

Sensitivity Analysis and 
Uncertainty Quantification 

 
 

Computational Support 
• Mesh Generation - Cubit 
• Visualization – ParaView, VisIt  
• Parameter Database 
  
 



DBD Conceptual Model –  
Undisturbed Scenario  
 Biosphere (Past Work) 

– Assume IAEA BIOMASS ERB 1B Biosphere  
• Potentially contaminated water from Seal Zone 

mixes in Upper Zone and surrounding 
permeable sediments 

• Pumping of the groundwater from Upper Zone 
for water supply  

– Dilution rate = 10,000 m3/yr 
– Individual consumption rate = 1.2 m3/yr 

• IAEA Dose Conversion Factors (DCFs)  
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 Biosphere (Current/Future Work) 
– Explicit flow and transport modeling in Upper Zone 

and sedimentary unit, including aquifer  
• Pumping of the groundwater from the aquifer for 

water supply  
• IAEA Dose Conversion Factors (DCFs)   

 
 
 
 



 40 CFR Part 191. Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and 
Transuranic Radioactive Wastes. 58 FR 66407, Readily available. 

 DOE (U.S. Department of Energy) 1996. Title 40 CFR Part 191 Compliance Certification Application for the Waste Isolation Pilot Plant. 
DOE/CAO-1996-2184. U.S. Department of Energy, Carlsbad Area Office, Carlsbad, NM. 

 NAS (National Academy of Sciences) 1995. Technical Bases for Yucca Mountain Standards.  National Research Council, Board on 
Radioactive Waste Management. National Academy Press. Washington, DC. 

 NEA (Nuclear Energy Agency) 2001. Reversibility and Retrievability in Geologic Disposal of Radioactive Waste: Reflections at the 
International Level. NEA Report No. 6923. Nuclear Energy Agency Organization for Economic Cooperation and Development, Paris, 
France. 
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