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H® Objectives
B PA methodology
— FEPs analysis, reference case

B PA model/code development

— High-performance computing (HPC) environment

B Demonstration simulation

— Generic salt repository example (for SNF)

B Source-term process model integration with PA
system model

B Summary and future work
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Objectives

B Develop a PA capability that readily evolves throughout the
program lifecycle (site selection and characterization,
construction, licensing, etc.) to

1) Evaluate potential SNF/HLW disposal sites in salt host rock (and
other generic media)

2) Help prioritize generic RD&D activities (later, site-specific)
3) Support safety case development during all phases

| Iterative PA Methodology | [ safety Case Evolution »
Defi i
erforma | Safety Case Evolution during Example Phases of Repository Development |
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ind breadth of the arguments for each element of the safety
ore substantial during the phased development of the repository,
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M Direct representation of important coupled multi-physics processes:

— Minimize conservative assumptions, simplifications, and process abstractions
* Enhances transparency and confidence

— Allows a realistic spatial-temporal representation of geometry, features, events,
and processes (FEPSs), and uncertainty (i.e., 3D probabilistic simulation)

« Spatial variability in degradation processes and T-H-C-M behavior
* Uncertainty quantification (UQ), both aleatory and epistemic, in parameters/processes

pow— 10° Probabilistic Output

Input Parameter || =1 _ s
Distributions - ::E-} 10° o S S e
' : Sampling: E™
 Monte Carlo 2 1024
» LHS stratified © ’
% i
Sof fHli== =",
105 | tetta oo ¢ )
. . . 0 200000 4000(‘)0 600000 800000 1000000
B High-performance computing (HPC) architecture Time (y7)
— Facilitates reasonable probabilistic PA-model runtimes
for science-based, 3D multi-physics * Fig. 1: J.C. Helton et al. / Reliability
Engineering and System Safety 122 (2014)
267-271.
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Multi-Physics Fidelity in PA versus
Nuclear Energy Supporting Process-Level Models

B We use process-level understanding of salt repository evolution to
inform the use of high-fidelity model components in PA code

B Process-level detail necessary in a PA is a function of time-scales and
importance of underlying processes

— e.g., salt creep closure and backfill reconsolidation (THM processes) are short time-
scale processes that may need to be represented in PA

—4-PWR
16% ----21-PWR
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B Multi-physics-capable PA model will help determine the processes
that are important to postclosure repository performance
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B Reference Case is a surrogate for site- and design-specific information
— Documents information and assumptions needed for generic disposal system models
— Helps ensure consistency across analyses (e.g., PA, process modeling, UA/SA)

Major steps in PA Methodology

Generic Salt Repository Reference Case
Geologic Disposal Concept of ; y
Inventory System Operations Biosphere Regulations
FEPs Identification J\L J\L
for a Generic Salt Engineered Barrier Natural Barrier
Repository System (EBS) System (NBS)

FEPs Screening &
PA Model Guidelines

Performance Assessment Multi-Physics Model/Code Construction

¥

Disposal System Evaluation

Preclosure Safety Postclosure Performance
Analysis Assessment

March 19, 2014
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Salt Reference Case Detalls

Nuclear Energy — Natural Barrier System (NBS)
B Salt host rock:
— Use information and characteristics -
representative of five major bedded salt . ’
basins in the U.S. s owdor kiver] | Mchigan]
Wyomng Green
» Stratigraphy: depth, thickness, lateral Sovier Vall O River Northern
eXtent evier va e!fﬁ Picce)ance Denver Apbelachian
Virgin Valley @ e :
* Formation properties: hydraulic gradient, go — Saltville 4
porosity, permeability, diffusivity, sorption 5. Red

Lake 0 Supai

Luke Gulf Coast

* Fluid (brine) chemistry

B Disturbed rock zone (DRZ2):
. . . . ~800 Kilometers
- Typlf:al properties from international B roninciaicin By ok Rk o Q
StUd|eS and from WIPP (2 Area of Salt Domes or Salt Anticlines

B Interbeds:
— Types (e.g., dolomite, anhydrite) and frequency
— Dimensions, locations (near DRZ), and properties

B Representative aquifer:
— A single-porosity, saturated, sedimentary formation

— Depth above repository, thickness, physical and chemical characteristics

March 19, 2014 8
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M Disposal Concept and Layout
— Repository depth = 680 m e ’
— Waste inventory 0 A e T e,
- ~70,000 MTHM UNF P S o s
+ ~13,400 WPs | AL A= ’y
* Burn-up = 60 GWd/MT o L # G ‘_“ == i ﬂz@%{&@
— Drift spacingand WP~ | >~ T 7
loading based on 200°C .
thermal limit for salt ¥
+ 12 PWR assemblies per WP e~ i
e 75 kW/WP b 5,809 -
— Geometry — layout of drifts and
shafts
* 84 pairs of 800-m drifts Packags
- grift spacing = 20 m s ; Emplacement i
— 80 5-m-long WPs per drift with 10 m : / ot

spacing prHaish
* Crushed salt backfill in drifts = e
« Sealed shafts (similar to WIPP) il b=
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Generic Salt Repository Reference Case
Geologic Disposal Concept of ; ;
Inventory System Operations Biosphere Regulations
FEPs Identification
for a Generic Salt Engineered Barrier Natural Barrier
Repository System (EBS) System (NBS)
FEPs Screening &

PA Model Guidelines

Performance Assessment Multi-Physics Model/Code Construction

: 2

Disposal System Evaluation

Preclosure Safety Postclosure Performance
Analysis Assessment
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Features, Events, Processes
(FEPs) Analysis
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B FEP analysis supports safety Features: Processes:
assessments and safety cases _— (Biosphere

(Aquifer, Receptor Well)

B Dilution

B Water Consumption

k. Dose Conversion Factors

— Development of system models
— Prioritization of research

— Licensing/safety case
(completeness)

( Far Field (NBS — DRZ)

— U.S. DOE-NE Used Fuel

5
— ldentification of risks and hazards g HostRock E gt
; (Intact Halite) m Diffusion
B FEP analysis is used in all E = o
advanced repository programs s Interbed
g

Disposition Disturbed Rock

opost | | _Zone(DRZ) _
— U.S. DOE-EM Waste Isolation

Pilot Plant (WIPP) Backfllled Drlft Excavatlon :
— U.S. OCRWM Yucca Mountain / ) \ =

Project
— German VSG (Gorleben)

— Nuclear Energy Agency (NEA)
International FEP Database

* Sweden, Switzerland, Belgium,
U.K., Canada

Source Term

(Waste Form, Waste Package)
B RN Inventory

B WF Degradation

B WP Degradation

B Gas Generation
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B FEPs identification —comprehensive list of FEPs that capture the entire
range of phenomena potentially relevant to long-term performance of
the repository

B FEPs screening — subset of important FEPs that individually, or in
combination with other FEPs, contribute to long-term performance

— FEPs may be excluded based on low probability, low consequence, or regulation

B PA model requirements — Review/analysis of included FEPs will
provide guidance on how to include them in the PA component models:

— Fidelity & dimensionality of T-H-M-C processes in PA

Broad FEP description Additional detail provided in “Screening Decision”
provided in the the “Associated Processes” may be dependent on
“Description” column column design and siting
LIJ\IFD FEP Name/Description Associated Processes Screening RecommenQatlon for a Generic
umber Salt Site
2.1.09.11 | Electrochemical Effects in - Enhanced metal corrosion Likely Excluded, but reevaluate once a more
EBS detailed design is available.

March 19, 2014 12



© ENERGY PA Methodology

Nuclear Energy — COde COnStI’UCtIOn (GUIdE“ﬂGS)
Generic Salt Repository Reference Case
Geologic Disposal Concept of ; ;
Inventory System Operations Biosphere Regulations
FEPs Identification ﬂ'V
for a Generic Salt Engineered Barrier Natural Barrier
Repository System (EBS) System (NBS)

FEPs Screening &
PA Model Guidelines

Performance Assessment Multi-Physics Model/Code Construction

) 2

Disposal System Evaluation

Preclosure Safety Postclosure Performance
Analysis Assessment
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B High-performance computing (HPC)
environment facilitates:

— Three-dimensional (3D) multi-physics in PA
— Multiple realizations over uncertain inputs

— Future advances in computational methods
and hardware

Dose to RMEI (mrem/yr)
=

0 200000 400000 600000 800000 1000000

B Code capabilities: Time (y7)
— Open source development and distribution
e Transparency 256

« Shareable among multi-lab subject matter
experts and stakeholders

— Flexible and extensible: scalable

* Modular implementation of simple and/or
advanced PA component models and FEPs

— Leverage existing computational capabilities
* Meshing, visualization, HPC solvers, etc. 1024 2048 4006 Bio2 fes4 o2res

Number of Cores
— Appropriate Configuration Management (CM)
and Quality Assurance (QA)

128 +

PFLOTRAN 270 M dof —@—
Ideal

64}

32

16}

8 L

Wall-Clock Time per Time Step [sec]

March 19, 2014 14



ZB3. U.S. DEPARTMENT OF

ENERGY

Nuclear Energy

Current Integrated PA Code Capabilities

Input Parameter Distributions

h
Computational Support
‘ ‘ + Mesh Generation - Cubit
P . + Visualization/Plotting —
Stochastic Slmulatlfn &~ Paraview, Visit
MA] - Parameter Database
® uncertainty quantification, LHS / J
stratified sampling, sensitivity analysis

t \ ( Results \
Domain Simulation =

PFLOTRAN —

B |ntegrate multi-physics =

simulations for EBS & NBS Python scripts to post-

process model output for

visualization and analysis )
Source Term and ( Flow & Transport Model \ Biosphere Model
EBS Evolution Model

y

B Spatial and temporal -
m Inventory representation of THC processes O
B High resolution of spatial s EdvaEtion B Radionuclide concentrations
and temporal representation - Diffusion/dispersion in aquifer
of processes and couplings: « Sorption

+ WF Degradation
+ Decay and ingrowth

- Radionuclide Mobilization * Homogeneous/heterogeneous

+ Solubility Limits \ reactions )

*Design Analysis Kit for Optimization and Terascale Applications
March 19, 2014 15
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ne, [US]] htpsy//bitbuckevorg/pllot L vk Hom

B Multi-physics B —
— Multi-phase flow and heat = WBithudet o G
— Multi-component reactive transport @ s py
_ Biogeochemistry processes Home > 15 Branches ull requests @ ssus 15 K mnam — :
B High-Performance Computing PRLOTRAN

— Mechanistic process models
— Highly-refined 3D discretizations
— Massive probabilistic runs

B Open Source Collaboration
— Leverages diverse scientific community

B Modern Fortran (2003/2008)

— Domain scientist friendly
— Modular framework for adding new

Installation Instructions

UNIVERSITY OF
MICHIGAN

Pacific
Northwest

National

capabilit b
P y Argonneé ﬂ m Laboratories

NATIONAL LABORATORY
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H Flow

— Multiphase gas-liquid

— Constitutive models and equations of state
M Reactive Transport

— Advection, dispersion, diffusion
— Multiple interacting continua

m Energy
— Thermal Conduction and Convection

B Geochemical Reaction
— Agueous speciation (with activity models)
— Mineral precipitation-dissolution

— Surface complexation, ion exchange, isotherm-
based sorption

— Radioactive decay with daughter products

March 19, 2014 17



© ENERGY PA Methodology

nucear Energy — DISPOSal System Evaluation
Generic Salt Repository Reference Case
Geologic Disposal Concept of ; ;
Inventory System Operations Biosphere Regulations
FEPs Identification "r
for a Generic Salt Engineered Barrier Natural Barrier
Repository System (EBS) System (NBS)

FEPs Screening &
PA Model Guidelines

Performance Assessment Multi-Physics Model/Code Construction

. 2

Disposal System Evaluation

Preclosure Safety stelosure Pe
Analysis Assessment
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Generic Salt Repository
Nuclear Energy PA Demonstration Case

B Undisturbed scenario P
® Uncertainty quantification (DAKOTA) "}

— Latin Hypercube sampling of input
parameter distributions

— Sensitivity analysis
B Coupled domain processes
(PFLOTRAN)

— NBS: 3D flow and radionuclide transport "
« Diffusion through DRZ and bedded salt
* Advection through aquifer

— EBS: realistic source term
* 5 radionuclides:
_ 129|’ 241Am’ 237Np, 233U’ 229Th

« Waste form (SNF) degradation rate controlled by kinetic rate of reaction
* Solubility limits
— Dissolved radionuclides that reach solubility will precipitate

March 19, 2014 19
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— 3D Model Domain
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Nuclear Energy

. . . — Z=245m
B Simulation domain “
— 3D vertical slice
. - . c
— 20-m wide pillar to pillar 2
— 1 drift with 80 waste packages )
and backfill L%‘
©
2
X =5009 m NX =242 =
Y = 20m NY = 5 >
Z = 245m NZ = 38
Cells = 45,980
4 1 Drift
/ 80 Waste Packages
!/ and Backfill

Drift detail

8 of 80 waste
packages shown
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B DAKOTA / PFLOTRAN simulations:
— Deterministic simulation with mean values

— 100-realization probabilistic simulation with
9 sampled parameters

— Run on SNL Red Sky HPC cluster
* Nested parallelism
« Many concurrent realizations

» Each realization distributed across many
processors

March 19, 2014

Stochastic Simulation
vt *
{barora)
B uncertainty quantification, LHS
stratified sampling, sensitivity analysis

$

Domain Simulation
PFLOTRAN

Integrate multi-physics
simulations for EBS & NBS

e W .
o _-'f' S . e
o —

" RED SKV

i

» Total nodes: 2,816 nodes / 22,528 cores
» 505 TeraFlops peak
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— Deterministic Simulation Results
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B 23’Np dissolved concentration at 1000 years, showing drift detail

olor
Np237 _p_acLrp. Jb_WM_b_
— 1.514=-090

F:
>

Vertical Exaggeration

— 2428=-12

— 389315

— 6.244=-18

1.001e-20
Mo 1.51ds-09
Mr: 1.001s-20

1000 years

1000 years
(bottom view)
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B 23’Np dissolved concentration B 233y precipitated concentration

Repository domain ~ 1000 m Repository domain ~ 1000 m

Pseudocolor Pseudocolor
Var: U233_lp_s_rp_ VF
- 1.500e-09 - 3.000e-12
2.410e-12 2.280e-14
3.873e-16 1.732e-16
6.223e-18 1.316e-18

- 1.000e-20 - 1.000e-20
Max: 1.000e-20 Max: 0.000
Min: 1.000e-20 Min: 0.000

March 19, 2014
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Multi-Realization Analysis

B 23'Np dissolved concentration vs. time in
anhydrite interbed at x = 400 m (DAKOTA
probabilistic output of 100 realizations)

o
=z

—

107°

]| — Mean
10 - Median
1071 === q=5%
- q=95%
1074
10~
ll] 13
101
5 1071
LU'”’
10~
18
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1072

1071
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Time (yr)

B DAKOTA rank correlation analysis: 23’Np
output concentration at 100K years versus
input parameter uncertainty

Spearman Rank Correlation for ““Np An. Bed (100ka)

M Scatterplot: 23’Np output concentration at
100K years versus DRZ porosity

10®
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Example of Flexible PA Model Architecture

B Coupling with Process-Level Mixed Potential Model (MPM) for
SNF Degradation:

System Level Model (Performance Assessment) ‘

" Solution Fuel matrtletleglr:adatlon
Chemistry rate

e

#. | —g 1.0E401 ~ Hll"/- fuel surface covered by NMP (e-phase)
it e | g 1
FLT] I‘I*l _LDi sio! § ,0; d position :\AE: LOEH00 Jb g = s Sl
T, ero con. lary E 10601 4
FELEDL L o
{ ] 1.0€-02 1 [H] = 1.0E-4M
ro con. lary 2 1.0E-03 4
Sl e c Oxidative
n, surface reactions © 1.0E-04 4 dissolution
' F = £
B 10605 fRdont2 LI
4
oo 1.0E-06 Chemical
g dissolution
— 1.0E-07 gH;=1.0E-1m
J @
e T —171H 2 1.0£-08 t + + !
0 10 20 30 40 50 60 70 80 90 100 5.0E* 0 i 10 100 1,000 10,000
Distance from fuel surface (micrometers) Time (Years)

SNF Waste Form Degradation Model
~ Radiolysis ~ Mixed Potential |
~ Module __ Module
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Summary and Future Work

B A PA modeling/analysis capability has been developed to:

— Evaluate generic and/or specific disposal sites with a high-fidelity
representation of coupled processes in 3D:

« Based on HPC architecture and software, and adaptable to future advances
» Use extensive current knowledge base in salt to inform model development
* Includes appropriate representation of uncertainty and heterogeneity

— Support prioritization of UFD RD&D activities

— Enhance confidence and transparency in the eventual safety case

B Demonstration of new capability by application to a generic salt
repository reference case

B FY14 ongoing work includes

— Further code refinement, as necessary

— Further reference case development, simulations, and testing for salt, as
well as granite and argillite

— Integration with SNF degradation process-level models

March 19, 2014 26
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1. Introduction, Purpose, and Context

2. Safety Strategy

2.2 Siting & Design strategy
NWPA

-Site selectionbasis

=Design requirements

-Disposal concepts

2.1 Management strategy

. Organizaﬁonai/m mt. structure
Safety culture & QA

*Planning and Work Control

«Knowledge mgmt

«Oversight groups

2.3 Assessment strategy

*Regulations (10 CFR 60)
Performance goals/safety criteria
= Safety functions/multiple barriers
«Uncertainty characterization
*RD&D prioritizationguidance

3. Assessment Basis

*Repository design & layout

- Waste package (WF) design

«Construction requirements
& schedule

- Operations & surface facility

- Waste acceptance criteria

=Inventory characterization

WP technical basis
«Buffer/backfill technical basis
«Shafts/sealstechnical basis
-International collaborafion & peer

review

- Site characterization
+Host rock/DRZ technical basis
=Aquifer/othergeologic units

technicalbasis

-International collaboration & peer

review

3.1 Design 3.4 Biosphere &
Construction, & 3.2 Waste & Engineered 3.3 Geosphere/ Natural Suggggn%}avfrggsrgent
Operations Barriers Technical Basis Barriers Technical Basis

- Biosphere & surface

environment:
-Surface environment
—Flora & fauna
—Human behavior

« International collaboration &

peer review

4. Disposal System Safety Evaluation

4.1 Preclosure Safety Analysis

= Surface facilities, handling & acceptance
= Underground transfer

«Emplacement operations

. Desr'?n basis event construction

* Preclosure model/software development

4.2 Postclosure Safety Assessment

- FEPs analysis/screening

= Scenario construction/screening

» TSPA model/software development

- Performance assessment analyses

= Barrier/safety functionanalyses and subsystem
analyses

« Uncertainty/sensitivity analyses

4.3 Confidence Enhancement

«RD&D prioritization

= Natural/anthropogenic analogues

«URL & large-scale validation

» Monitoring and performance
confirmation

* International collaboration & peer
review

5. Synthesis & Conclusions

- Key findings and statement(s) of confidence
= Discussion/disposition of remaining uncertainties
- Path forward

March 19, 2014
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= “Performance assessment is arguably
the most important part of the safety lterative PA Methodology

case...” (NWTRB 2011)

Define . Characterize System

f r r e
Safety Case Structure Performance Goals " (Waste, Facility, Site) <
| Executive Summary | A
Section 1. Introduction, Purpose, and Context I Identify Scenarios for
Section 2. Safety Strategy Analysis
(Develop and screen FEPs,
2.1 Management strategy 2.2 Siting & Design 2.3 Assessment strategy construct scenarios,
p strategy 3 estimate scenario
8 probabilities)
=
His
E- l
E -
Section 3. Assessment Basis S Build Models and v
@ Abstractions Quantify
é (Conceptual models, Uncertainty
3.1 Design, 3.2 Waste & 3.3 Geosphere/ i = mathematical models,
Construction, & || Engineered Barriers Natural Barriers 3.4 Biosphere & o] computational models)
Operations Technical Basis Technical Basis Surface )
. i Environment a

Technical Basis l
Construct Integrated

PA Model and —
Perform Calculations

!

4. Disposal System Safety Evaluation

4.2 Postclosure

4.1 Preclosure Safety Assessment 4.3 Confidence % = 2

Safety Analysis «FEPs analysis/screening Enhancement Uncertainty and Directed Science
*Scenario construction/screening L T .
*T5PA model/software development Sensitivity Analyses and Testing Program

*Pertormance assessment analyses

- Barrier/safety function analyses and
subsystem analyses

+ Uncertainty/sensitivity analyses

l A

=+ ==+ ¢Evaluate Performance

LI I T I I I A I I I I I I I R A I I I B '

5. Synthesis & Conclusions (no external docs)

Prioritize Research

I I I I I R R A B

+*Key findings and statement(s) of confidence
*Discussion/disposition of remaining uncertainties
*Path forward
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S

Role of RD&D in Evolution of the
Safety Case

= Jteration of Safety Assessment and Site Characterization/Design:

Site Characterization
and Repository
Design in Phase “A”

Safety
Assessment in
Phase “A”

RD&D Activities
(Address Uncertainties

& Build Confidence)

Site Characterization
and Repository
Design in Phase “B”

»

Safety
Assessment in
Phase “B”

l T3 i

+ Decision Framework: |« ~~~~~TToToommmmmmmmmmmmmmmmmmm

« Stakeholder Input:

O = objective
(%7 M= metric
On 0s
&
%] -
b} LI l
Oy 0iz| [Ous
[%1] ey

M Safety case provides a

oot Bl el Rl Rl L structured framework to assist in
prioritizing the technical work in

the next phase, to reduce

uncertainties and enhance

Key Elements &
Sub-elements
of Safaty Case

Staternent
of Purpase

# confidence
- — B Safety understanding and the
— associated technical bases

evolve with phases of repository
development, via RD&D
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Features, Events, Processes
(FEPs) Screening Methodology

March 19, 2014

Yes —

Relevant Existing
FEPs (e.g., NEA)

Potentially Site- and Design-
Specific Information
(e.g., reference case)

! !

FEPs Potentially Relevant to
Specific Repository System

|

Screen FEPs Based on
Technical and Regulatory Criteria

Screened

Out

I

Low Probability
(e.g., FEP has an
annual probability of
occurrence of less
than 107%)

exposure or radionuclide

No -

release)

specifications)

Yes —
Screened
u‘ Out
Low Consequence By Regulation
or (e.g., exclusion of FEP or (e.g.,FEP is
e=p| Wwould not significantly |g—p| inconsistent with
change radiological regulatory

No -
Screened In l Screened In

No -

I Screened In

Screened-in (Included) FEPs to be Implemented
in Models for Undisturbed (Nominal) and/or

Disturbed (Disruptive) scenarios
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B Nuclear Waste Disposal T e T . ..
o N

— Waste Isolation Pilot Plant (WIPP) =i

H Climate (CLM-PFLOTRAN)

— Next Generation Ecosystem Experiments (NGEE)
Arctic

— DOE Earth System Modeling (ESM) Program L
B Fate and Transport of Contaminants Hammond and Lichtner, WRR, 2010

— PNNL SBR Science Focus Area (Hanford 300 Area)

— ASCEM (i.e. PFLOTRAN geochemistry)

B CO2 Sequestration

— DOE Fossil Energy: Optimal Model Complexity in
Geological Carbon Sequestration (U. Wyoming)

— DOE Geothermal Technologies: Interactions between
Supercritical CO2, Fluid and Rock in EGS Reservoirs

March 19, 2014 34



y U.S. DEPARTMENT OF

'ENERGY  pr| OTRAN Bitbucket Wiki

Nuclear Energy

P e — ¥ —'—-
f g pflotran / pflotran-dev /v % \ Y — |
< C fi Atlassian, Inc. [US] | https://bitbucket.org/pflotran/pflotran-dev/wiki/Home el =

= ©Bitbucket Repositories ~ Create

pflotran-dev

&, Clone~ | Ir Branch | ¢ty Pull request | ses o -
8 pilotran B Share
Overview Source Commits Branches Pull requests (2 Issues (18 Wiki Downloads o 5
Home Clone wiki ~ Edit = Create History

PFLOTRAN

PFLOTRAN is an open source, state-of-the-art massively parallel subsurface flow and reactive transport code. The code is developed under a
GNU LGPL license allowing for third parties to interface proprietary software with the code, however any modifications to the code itself must be
documented and remain open source. PFLOTRAN is written in object oriented, free formatted Fortran 2003. The choice of Fortran over C/C++
was based primarily on the need to enlist and preserve tight collaboration with experienced domain scientists, without which PELOTRAN's
sophisticated process models would not exist.

PFLOTRAN employs parallelization through domain decomposition using the MPI-based PETSc framework with pflotran-dev tracking the
developer version of PETSc (i.e. petsc-dev) available through Bitbucket.

PFLOTRAN Performance

Installation Instructions
Windows

Linux
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e Mercurial: distributed source control management tool

e Bitbucket: online PFLOTRAN repository

hg clone https://bitbucket.org/pflotran/pflotran-dev
Source tree
Commit logs
Wiki
e Installation Instuctions
e Quick Guide
e FAQ (entries motivated by questions on mailing list)

e Change Requests
e Issue Tracker

e Google Groups: pflotran-users and pflotran-dev mailing lists
e Buildbot: automated building and testing

e Google Analytics: tracks behavior on Bitbucket
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SENTOp
< 0
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B Manages uncertainty quantification (UQ), sensitivity analyses
(SA), optimization, and calibration

— Generic interface to simulations

— Extensive library of time-tested and advanced algorithms
— Mixed deterministic / probabilistic analysis

— Supports scalable parallel computations on clusters

— Obiject-oriented code; modern software quality practices

DAKOTA
* Optimization

» Sensitivity Analysis <
L' Parameter Estimation J

*  Uncertainty Quantification

erformance
Parameters Sorm
Computational Model etrics

* Repository Simulator

*Black Box Code: c.g., mechanics, circuits,
high energy physics, biology, chemistry

* Semi-intrusive Code: e.g., Matlab, Python,
multi-physics codes

http://dakota.sandia.gov/
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