
Performance Assessment Modeling of a 
Generic Salt Disposal System for High-Level 

Radioactive Waste 

S. David Sevougian 
Principal Member of Technical Staff 

Sandia National Laboratories 
 

U.S. Nuclear Waste Technical Review Board Meeting 
Albuquerque, NM 

March 19, 2014 
 

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.  SAND2014-1737P. 



Participants in Performance Assessment 
(PA) and Coupled Process Modeling 

 DOE 
– Prasad Nair, Mark Tynan 

 SNL 
– Geoff Freeze, Payton Gardner, Glenn Hammond, Dave Sevougian,   

Bob MacKinnon , Frank Hansen, Christi Leigh, Lupe Arguello, Paul 
Mariner 

 OFM Research 
– Peter Lichtner 

 LANL 
– Scott Painter, Shaoping Chu, Phil Stauffer, Dylan Harp 

 LBNL 
– H.H. Liu, Jens Birkholzer, Marco Bianchi, Jonny Rutqvist  

March 19, 2014 2 



Outline of Presentation 

 Objectives 
 PA methodology   

– FEPs analysis, reference case 

 PA model/code development   
– High-performance computing (HPC) environment 

 Demonstration simulation  
– Generic salt repository example (for SNF) 

 Source-term process model integration with PA 
system model 

 Summary and future work 
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Objectives 

 Develop a PA capability that readily evolves throughout the 
program lifecycle (site selection and characterization, 
construction, licensing, etc.) to 
1) Evaluate potential SNF/HLW disposal sites in salt host rock (and 

other generic media)  
2) Help prioritize generic RD&D activities (later, site-specific) 
3) Support safety case development during all phases 
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PA Model Development Methodology 

 Direct representation of important coupled multi-physics processes: 
– Minimize conservative assumptions, simplifications, and process abstractions  

• Enhances  transparency and confidence 

– Allows a realistic spatial-temporal representation of geometry, features, events, 
and processes (FEPs), and uncertainty (i.e., 3D probabilistic simulation) 
• Spatial variability in degradation processes and T-H-C-M behavior 
• Uncertainty quantification (UQ), both aleatory and epistemic, in parameters/processes 

 

Sampling: 
• Monte Carlo   
• LHS stratified 
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* Fig. 1:  J.C. Helton et al. / Reliability 
Engineering and System Safety 122 (2014) 
267–271.  

Probabilistic Output 

 High-performance computing (HPC) architecture 
– Facilitates reasonable probabilistic PA-model runtimes 

for science-based, 3D multi-physics  



Multi-Physics Fidelity in PA versus 
Supporting Process-Level Models 

 We use process-level understanding of salt repository evolution to 
inform the use of high-fidelity model components in PA code 

 Process-level detail necessary in a PA is a function of time-scales and 
importance of underlying processes 

– e.g., salt creep closure and backfill reconsolidation (THM processes) are short time-
scale processes that may need to be represented in PA 
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                               Increasing time 

Porosity vs. time 

 Multi-physics-capable PA model will help determine the processes 
that are important to postclosure repository performance 



PA Methodology:  Reference Case 

 Reference Case is a surrogate for site- and design-specific information 
– Documents information and assumptions needed for generic disposal system models 
– Helps ensure consistency across analyses (e.g., PA, process modeling, UA/SA) 
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Major steps in PA Methodology 



Salt Reference Case Details 
        – Natural Barrier System (NBS) 

 Salt host rock: 
– Use information and characteristics 

representative of five major bedded salt 
basins in the U.S. 
• Stratigraphy: depth, thickness, lateral 

extent 
• Formation properties:  hydraulic gradient, 

porosity, permeability, diffusivity, sorption 
• Fluid (brine) chemistry 

 Disturbed rock zone (DRZ): 
– Typical properties from international 

studies and from WIPP 

 

 
 Interbeds: 

– Types (e.g., dolomite, anhydrite) and frequency 
– Dimensions, locations (near DRZ), and properties 

 Representative aquifer: 
– A single-porosity, saturated, sedimentary formation 
– Depth above repository, thickness, physical and chemical characteristics 
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Salt Reference Case Details 
        – EBS and Concept of Operations 

– Repository depth = 680 m 

– Waste inventory 
• ~70,000 MTHM UNF 
• ~13,400 WPs 
• Burn-up = 60 GWd/MT 

– Drift spacing and WP 
loading based on 200°C 
thermal limit for salt 
• 12 PWR assemblies per WP 
• 7.5 kW/WP 

 
 

– Geometry — layout of drifts and 
shafts 
• 84 pairs of 800-m drifts 

– Drift spacing = 20 m 
– 80 5-m-long WPs per drift with 10 m 

spacing 
• Crushed salt backfill in drifts 
• Sealed shafts (similar to WIPP) 
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 Disposal Concept  and Layout 



PA Methodology – 
Features, Events, Processes (FEPs) Analysis 
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Features, Events, Processes 
(FEPs) Analysis 

March 19, 2014 

 FEP analysis supports safety 
assessments and safety cases 

– Development of system models 
– Prioritization of research 
– Licensing/safety case 

(completeness) 
– Identification of risks and hazards 

 FEP analysis is used in all 
advanced  repository programs 

– U.S. DOE-NE Used Fuel 
Disposition 

– U.S. DOE-EM Waste Isolation 
Pilot Plant (WIPP) 

– U.S. OCRWM Yucca Mountain 
Project 

– German VSG (Gorleben) 
– Nuclear Energy Agency (NEA) 

International FEP Database 
• Sweden, Switzerland, Belgium, 

U.K., Canada 
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FEPs Analysis/Screening  
to Inform PA Model Guidelines 

 FEPs identification – comprehensive list of FEPs that capture the entire 
range of phenomena potentially relevant to long-term performance of 
the repository  

 FEPs screening – subset of important FEPs that individually, or in 
combination with other FEPs, contribute to long-term performance 
– FEPs may be excluded based on low probability, low consequence, or regulation 

 PA model requirements – Review/analysis of included FEPs will 
provide guidance on how to include them in the PA component models: 

– Fidelity & dimensionality of  T-H-M-C processes in PA 
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UFD FEP 
Number Name/Description Associated Processes Screening Recommendation for a Generic 

Salt Site 
2.1.09.11 Electrochemical Effects in 

EBS 
- Enhanced metal corrosion Likely Excluded, but reevaluate once a more 

detailed design is available. 

 



PA Methodology 
– Code Construction (Guidelines) 

March 19, 2014 13 



PA Code Construction (Guidelines) 

 High-performance computing (HPC) 
environment facilitates: 
– Three-dimensional (3D) multi-physics in PA 
– Multiple realizations over uncertain inputs 
– Future advances in computational methods 

and hardware 
 Code capabilities: 

– Open source development and distribution 
• Transparency 
• Shareable among multi-lab subject matter 

experts and stakeholders  

– Flexible and extensible; scalable   
• Modular implementation of simple and/or 

advanced PA component models and FEPs 

– Leverage existing computational capabilities 
• Meshing, visualization, HPC solvers, etc.   

– Appropriate Configuration Management (CM) 
and Quality Assurance (QA) 
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Current Integrated PA Code Capabilities 
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PFLOTRAN Capabilities 

 Multi-physics 
– Multi-phase flow and heat 
– Multi-component reactive transport 
– Biogeochemistry processes 

 High-Performance Computing 
– Mechanistic process models 
– Highly-refined 3D discretizations 
– Massive probabilistic runs 

 Open Source Collaboration 
– Leverages diverse scientific community  

 Modern Fortran (2003/2008) 
– Domain scientist friendly 
– Modular framework for adding new 

capability 
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PFLOTRAN Process Modeling 

 Flow 
– Multiphase gas-liquid 
– Constitutive models and equations of state 

 Reactive Transport 
– Advection, dispersion, diffusion 
– Multiple interacting continua 

 Energy 
– Thermal Conduction and Convection 

 Geochemical Reaction 
– Aqueous speciation (with activity models) 
– Mineral precipitation-dissolution 
– Surface complexation, ion exchange, isotherm-

based sorption 
– Radioactive decay with daughter products 
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Hammond and Lichtner, WRR, 2010 



PA Methodology 
– Disposal System Evaluation 
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• 5 radionuclides: 
– 129I, 241Am, 237Np, 233U, 229Th 

• Waste form (SNF) degradation rate controlled by kinetic rate of reaction 

• Solubility limits 
– Dissolved radionuclides that reach solubility will precipitate  

Generic Salt Repository  
PA Demonstration Case 

 Undisturbed scenario   
 Uncertainty quantification (DAKOTA) 

– Latin Hypercube sampling of input 
parameter distributions 

– Sensitivity analysis 
 Coupled domain processes 

(PFLOTRAN) 
– NBS: 3D flow and radionuclide transport 

• Diffusion through DRZ and bedded salt 
• Advection through aquifer  

– EBS: realistic source term 
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Generic Salt Repository PA Demonstration 
– 3D Model Domain 

NX    = 242 
NY    =    5 
NZ    =   38 
Cells = 45,980   
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Drift detail 
8 of 80 waste 

packages shown 

X    = 5009 m 
Y    =     20 m 
Z    =   245 m 
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 Simulation domain 
– 3D vertical slice 
– 20-m wide pillar to pillar 
– 1 drift with 80 waste packages 

and backfill 



Generic Salt Repository PA 
Demonstration – Simulations  

 DAKOTA / PFLOTRAN simulations: 
– Deterministic simulation with mean values 
– 100-realization probabilistic simulation with 

9 sampled parameters  
– Run on SNL Red Sky HPC cluster 

• Nested parallelism 
• Many concurrent realizations 
• Each realization distributed across many 

processors 

• Total nodes: 2,816 nodes / 22,528 cores 
• 505 TeraFlops peak 
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Generic Salt Repository PA Demonstration 
– Deterministic Simulation Results 

 237Np dissolved concentration at 1000 years, showing drift detail 
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1000 years 

1000 years 
(bottom view) 
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Generic Salt Repository PA Demonstration 
– Deterministic Simulation Results 

 233U precipitated concentration 
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 237Np dissolved concentration 
Repository domain ∼ 1000 m 

 

 
 

Repository domain ∼ 1000 m 
 

 
 



Multi-Realization Analysis 

 237Np dissolved concentration vs. time in 
anhydrite interbed at x = 400 m (DAKOTA 
probabilistic output of 100 realizations) 

 DAKOTA rank correlation analysis:  237Np 
output concentration at 100K years versus 
input parameter uncertainty 

 
 

 

 Scatterplot: 237Np output concentration at 
100K years versus DRZ porosity 
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Example of Flexible PA Model Architecture 

System Level Model (Performance Assessment) 

Solution 
Chemistry 

Instant Release 
Fraction Module 

Mixed Potential 
Module 

Radiolysis 
Module 

SNF Waste Form Degradation Model 

Fuel matrix degradation 
rate + IRF 
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 Coupling with Process-Level Mixed Potential Model (MPM) for 
SNF Degradation: 



 A PA modeling/analysis capability has been developed to: 
– Evaluate generic and/or specific disposal sites with a high-fidelity 

representation of coupled processes in 3D: 
• Based on HPC architecture and software, and adaptable to future advances 
• Use extensive current knowledge base in salt to inform model development 
• Includes appropriate representation of uncertainty and heterogeneity 

– Support prioritization of UFD RD&D activities 
– Enhance confidence and transparency in the eventual safety case 

 Demonstration of new capability by application to a generic salt 
repository reference case 

 FY14 ongoing work includes 
– Further code refinement, as necessary 
– Further reference case development, simulations, and testing for salt, as 

well as granite and argillite 
– Integration with SNF degradation process-level models 

Summary and Future Work 
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Thank you for your attention! 
 

Questions? 
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Backup Slides 
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Detailed Elements of the Safety Case 
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Role of PA in the Safety Case 

Iterative PA Methodology 
 “Performance assessment is arguably 

the most important part of the safety 
case...” (NWTRB 2011) 
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Role of RD&D in Evolution of the 
Safety Case 

 Iteration of Safety Assessment and Site Characterization/Design: 

 Safety case provides a 
structured framework to assist in 
prioritizing the technical work in 
the next phase, to reduce 
uncertainties and enhance 
confidence 

 Safety understanding and the 
associated technical bases 
evolve with phases of repository 
development, via RD&D 

Safety Case Evolution 
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Features, Events, Processes 
(FEPs) Screening Methodology 
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FEPs Matrix 
                           Coupled THCMBR Processes and Events 
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Hammond and Lichtner, WRR, 2010 

Major Projects Leveraging PFLOTRAN 

 Nuclear Waste Disposal 
– Waste Isolation Pilot Plant (WIPP)  
– SKB Forsmark Spent Fuel Nuclear Waste Repository 

 Climate (CLM-PFLOTRAN) 
– Next Generation Ecosystem Experiments (NGEE) 

Arctic 
– DOE Earth System Modeling (ESM) Program 

 Fate and Transport of Contaminants 
– PNNL SBR Science Focus Area (Hanford 300 Area) 
– ASCEM (i.e. PFLOTRAN geochemistry) 

 CO2 Sequestration 
– DOE Fossil Energy: Optimal Model Complexity in 

Geological Carbon Sequestration (U. Wyoming) 
– DOE Geothermal Technologies: Interactions between 

Supercritical CO2, Fluid and Rock in EGS Reservoirs 
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PFLOTRAN Bitbucket Wiki 
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PFLOTRAN Support Infrastructure 
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DAKOTA Modeling Capabilities 

 Manages uncertainty quantification (UQ), sensitivity analyses 
(SA), optimization, and calibration  
– Generic interface to simulations 
– Extensive library of time-tested and advanced algorithms 
– Mixed deterministic / probabilistic analysis 
– Supports scalable parallel computations on clusters 
– Object-oriented code; modern software quality practices 
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