APT#/77990
U.S. DEPARTMENT OF

...:\\'f KT o) ',._.
[ "\'_‘.-'f.’
-Ir" iy -
: | )3 N I E
\ ,l'-:"' u c ea r nergy
=\ S
PR F day
4-‘/}\ iy
5 »
LATES O

Ductile-to-Brittle Transition Temperatures for
High-Burnup PWR Cladding Alloys

Mike Billone and Yung Liu
Argonne National Laboratory

U.S. NWTRB Winter Meeting
November 20, 2013



3*""‘“”“4::,_?_ U.S. DEPARTMENT OF
WENERGY Outline

Nuclear Energy

*"Introduction

*Materials and Experimental Methods
sSummary of Results

=Conclusions

sFuture Priorities



SR, U.S. DEPARTMENT OF

“ENERGY Introduction: UFD ST R&D
Objectives and NRC Concerns

Nuclear Energy

Objectives of UFD Storage and Transportation (ST)
R&D are to develop technical bases for demonstrating

=Used fuel integrity for extended storage periods
»Fuel retrievability and transportation after long term storage

=Transportation of high-burnup (HBU, >45 GWd/MTU) fuel

NRC Spent Fuel Storage and Transportation (SFST)

= Concerned about HBU cladding embrittlement after 20-y storage

= Concerned about transporting HBU fuel below cladding
ductile-to-brittle transition temperature (DBTT)
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B 10 CFR 72: Criteria for Storage of Spent Nuclear Fuel
e Protect against cladding degradation that leads to gross ruptures or...
e |SG-1, Rev. 2 (2007): gross rupture is a crack >1 mm in width

B 10 CFR 71: Criteria for Transportation of Spent Nuclear Fuel

e Ambient temperature: -29°C to 38°C (use most unfavorable)

B NRC Interim Staff Guidance (ISG)-11, Revision 3 (2003)
e Limits HBU cladding T to 400°C for drying-transfer, storage & transportation

B Embrittlement Concerns for HBU PWR Fuel Rod Cladding

e Higher hydrogen content: may embrittle as-irradiated cladding
e Higher decay heat: may lead to higher drying-storage temperatures
e Higher internal gas pressure: leads to higher peak hoop stresses

e Higher peak hoop stress: may cause radial-hydride precipitation and
embrittlement during vacuum drying, transfer, and storage
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M |_oads on Fuel-Rod Cladding during Transport

e Normal transport conditions include vibration and shock

e Hypothetical accident conditions include severe impact loads
— Axial stresses due to impact and bending
—Hoop stresses (0g) due to gas-pressure and “pinch-type” loading (F)

PCIl Flaw/Radial Hydride

uuuuuuuuu

Internal
Pressure

e, Note: >500 partial
pellet-pellet gaps T E

due to “dishing”
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M Cladding Mechanical Properties and Failure Limits
e Available for HBU Zircaloy-4 (Zry-4) with circumferential hydrides
e Available for Zry-2 but data needed at high fast fluence (i.e., HBU)

e Data needs
— Tensile properties of HBU M5® and ZIRLO™ cladding alloys

— Failure limits for all cladding alloys following drying and storage
 Radial hydrides can embrittle cladding in elastic deformation regime

BMArgonne Experimental Program

e Develop family of ductility curves following slow cooling from
<400°C (ISG-11, Rev. 3 limit) and decreasing og

e Determine DBTT for each set of peak drying-storage T and og
e Goal: determine ranges of peak T and og for which DBTT <20°C
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Materials and Experimental Method

Note: Cladding materials are from fuel rods
iIrradiated to HBU in commercial
Pressurized Water Reactors (PWRS)
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VENERGY Materials: HBU Cladding Alloys in As-
Irradiated Condition (Baseline) and after

Nuclear Energy Simulated Drying-Storage (RHT) at 400°C
Cladding T™MT Burnup, H-Content, Peak RHT Drying
Alloy GWd/MTU wppm Stress, MPa Cycles
M5® RXA 63 944 140 1
68 72x10 110 1
68 58+15 90 1
70 76£5 0 -
ZIRLO™ CWSRA 70 650+190 140 1
70 42563 110 1
70 35080 110 1
68 530+100 90 1
68 480+131 90 3
68 535+50 80 1
68 53070 0 —
Zry-4 CWSRA 67 615+%£82 140 1
67 52090 110 1
67 640140 0 —
67 300*+15 0 —
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Experimental Method: Simulation of
Drying and Storage by Means of
Radial Hydride Treatment (RHT)

Cladding Segment

420

Temperature (°C)

220

Rodlet Fabrication

400
380 |
360 |
340
320
300 |
280
260 |
240

Radial Hydride Treatment

Ap(T) = [(T+273)/296] Ap(23°C) + 0.057 MPa

— 5°Clh
UO(T) = (Rmi/ h m) Ap(T)

5 10 15 20 25 30 3

Time (Hours)

40
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Controlled displacement rates Orientation:

5 mm/s typical 12 o ’clock = applied load
1.7-mm maximum displacement

Elastic o, (3,9) ® 60% 0, (6, 12)

R B MR

Maximum permanent

displacement =10%
Controlled temperature for uncracked rings
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M Susceptibility to Radial-Hydride Precipitation
e Low for HBU Zry-4 cladding
e Moderate for HBU ZIRLO™
e High for HBU M5®

W Susceptibility to Radial-Hydride-Induced Embrittlement

e Low for HBU Zry-4
e Moderate for HBU M5®
e High for HBU ZIRLO™

W DBTT Values for HBU Cladding Alloys

Peak drying-storage hoop stress at 400°C: 140 MPa—110 MPa—90 MPa—0 MPa
DBTT for HBU M5@ after slow cooling: 80°C — 70°C — <20°C — <20°C
DBTT for HBU ZIRLO™ after slow cooling: 185°C — 125°C — 20°C — <20°C

DBTT for HBU Zry-4 after slow cooling: 55°C —» <20°C — — >90°C
— Emobirittled by circumferential hydrides: 61582 wppm 520+90 wppm  640+£140 wppm
— HBU Zry-4 with 300+15 wppm was highly ductile at 20°C

12
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RCT Ductility vs. Test Temperature for

14
90 MPa High-Burnup M5°®
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_ 10} M __
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Baseline HBU M5®:
/65 wppm H
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RCT Ductility vs. Test Temperature
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Baseline HBU ZIRLO™:
53070 wppm H
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RCT Ductility & DBTT for RHT
(400°C) HBU Zry-4

Offset Strain (%)
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Baseline HBU Zry-4:
640140 wppm H
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B Susceptibility to Radial-Hydride Precipitation

e |Low for HBU Zry-4

e Moderate for HBU ZIRLO™

e High for HBU M5® (recrystallized-annealed microstructure & low H content)
W Susceptibility to Radial-Hydride-Induced Embrittlement

e |Low for HBU Zry-4
However, circumferential hydrides with >800 wppm will embrittle HBU Zry-4

e Moderate for HBU M5® due to sparse distribution of radial hydrides

e High for HBU ZIRLO™ due to denser distribution of continuous radial-
circumferential hydrides

® Drying-Storage Conditions for which DBTT <20°C

e HBU M5@ and ZIRLO™: peak hoop stress (gy) <90 MPa
e HBU Zry-4: peak o, =110 MPa and hydrogen content <570 wppm

B What is Fraction of HBU Fuel Rods with Peak o4, <90 MPa?
e |nsufficient database to answer question (see next slide)

19
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B End-of-Life Internal Gas Pressure for HBU PWR Fuel Rods
Hundreds of thousands of PWR rods irradiated to >45 GWd/MTU
EPRI-published data points (2007): 25

Fuels Subcommittee expanded database (2013): 25 — 60

Ongoing effort to expand database to >100 HBU PWR fuel rods

M Best-Estimate Cladding and Plenum Temperatures

e Feedback from cask vendors
e Feedback from other tasks within UFD program

B Range of Hydride Distributions across Cladding Wall

e Depends on operating conditions
e Difficult to find open-literature data beyond what Argonne has published
e Fuel vendors have restricted datasets; work with EPRI to establish data trends

B Mechanical Properties of HBU M5® and ZIRLO™

e Very little data in open literature
e [uel vendors have extensive datasets; work with EPRI to establish data trends

20
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FY2014 Priorities

BSupport Planning & Implementation of Industry HBU
DEMO Project

e Effects of “rewetting” and multiple drying cycles

BHelp Establish Technical Bases for Extended Storage
and Transportation of UNF, Especially HBU Fuel
e Effects of lower peak cladding temperature (e.g., 350°C)

— Solubility limits: 200 wppm at 400°C — 120 wppm at 350°C
— Less hydrogen available for precipitation as radial hydrides

e Effects of multiple drying cycles at >90 MPa hoop stress and 350°C
e Mechanical properties and failure limits

21
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Publications

B M.C. Billone et al. Phase | Ring Compression Testing of High-Burnup Cladding.
FCRD-USED-2012-000039, Dec. 21, 2011.

B M.C. Billone et al. Baseline Studies for Ring Compression Testing of High-Burnup
Fuel Cladding. FCRD-USED-2013-000040, ANL-12/58, Nov. 23, 2012.

B M.C. Billone et al. “Ductile-to-brittle transition temperature for high-burnup cladding
alloys exposed to simulated drying-storage conditions,” J. Nucl. Mater. 433 (2013)
431-448.

B M.C. Billone et al., “Effects Drying and Storage on High-Burnup Cladding Ductility,”
Proc. IHLRWM Conf., Albuquerque, NM, Apr. 28 — May 2, 2013.

B M.C. Billone et al., “Baseline Properties and DBTT of High-Burnup PWR Fuel
Cladding Alloys,” PATRAM-2013, San Francisco, CA, Aug. 18-23, 2013.

B M.C. Billone et al. Embrittlement and DBTT of High-Burnup PWR Fuel Cladding
Alloys. FCRD-UFD-2013-000401, ANL-13/16, Sept. 30, 2013.
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As-lrradiated Fuel and Cladding
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Fuel Cross Section Fuel Cross Section near
near Pellet Mid-plane Pellet-Pellet Interface
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Hydride Distribution in
HBU Fuel Rod Cladding
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17x17 ZIRLO™ 15x15 Zry-4

660+150 wppm H 640140 wppm H
840 wppm max local H 850 wppm max local H
Higher dT/dr Lower dT/dr
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As-lrradiated (Baseline) HBU Cladding and
HBU Cladding after Simulated Drying-Storage
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DBTT Results Following Cooling from
400°C Peak RHT Temperature

H- Peak RHT Effective Radial-
Cladding | Content, Stress, Hydride Length, | DBTT,

Alloy wppm MPa % of Clad. Wall ° C | Sponsor

RXA 9444 140 72410 80 DOE

M5® 72410 110 6110 70 DOE

58415 90 31+13 <20 DOE

76+5 0 ~0 <20 DOE

650+190 140 6711 185 NRC

CWSRA | 425+63 110 27410 <150 NRC

ZIRLO™ 350£80 110 (24-h hold) 33£13 125 NRC

530100 90 19+9 20 DOE

4804131 90 (3-cycle) 20+9 20 DOE

53550 80 943 <20 DOE

53070 0 ~0 <20 DOE

CWSRA | 615+82 140 (3-h hold) 16+4 55 NRC

Zry-4 52090 110 (8-h hold) 945 <20 NRC

640140 0 0 >90 DOE

30015 0 0 <20 DOE
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B Baseline Studies for As-irradiated M5®
e 8-um oxide-layer (0.y), 0.56-mm h,,, 9.51-mm D,
e C, =76x5 wppm, some radial hydrides, RHCF = 0%
e High ductility (no cracking through 1.7 mm displacement)

B HBU M5® Results after Simulated Drying/Storage
e 140 MPa @ 400°C: Cy = 944 wppm, RHCF = 72+10%, DBTT =80°C
—Dissolution at 329°C; precipitation at 283°C (0g = 116 MPa)
e 110 MPa @ 400°C: Cy = 72£10 wppm, RHCF = 61+10%, DBTT =70°C
—Dissolution at 307°C; precipitation at 261°C (og = 87 MPa)
e 90 MPa @ 400°C: Cy = 58+15 wppm, RHCF = 31+13%, DBTT <20°C
—Dissolution at 291°C; precipitation at 245°C (og = 69 MPa)

30
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Hydrides in As-Irradiated HBU M5®
at Same Elevation: Baseline Results

Radial Hydrides
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Baseline M5®: 765 wppm H
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B Baseline Results for HBU ZIRLO™

47-pm Oy, 0.54 mm h,,, 9.44-mm D,

530+£70 wppm C,, local radial hydrides (RHCF = 0%)

136x7 wppm H within inner 63% of cladding wall

RCT ductility results (DBTT < 20°C): 7% —11% for 20°C — 150°C

B HBU ZIRLO™ Results after Simulated Drying/Storage
e 140 MPa @ 400°C & 650+£190 wppm H:
RHCF = 67+17%, DBTT = 185°C
e 110 MPa @ 400°C & 350-425 wppm H:
RHCF = 30+£12%, DBTT = 125°C (no change for 24-h vs. 1-h hold time)
e 90 MPa @ 400°C & 530+£100 wppm H:
RHCF = 1929%, DBTT = 20°C (no change for 3-cycle drying)
e 80 MPa @ 400°C & 53550 wppm H:
RHCF = 9+3%, DBTT < 20°C
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Hydrides in As-Irradiated HBU ZIRLO™
at Same Axial Elevation: Baseline Results

Radial Hydride

35



GFR U.S- DEPARTMENT OF Hydrides in Baseline and RHT
(400°C, 140/110 MPa) HBU ZIRLO™

Nuclear Energy

Baseline HBU ZIRLO™:
53070 wppm H
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Baseline HBU ZIRLO™:
53070 wppm H
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Single-Cycle Drying Multiple-Cycle Drying
36% Maximum RHCF 36% Maximum RHCF
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B Baseline Results for HBU Zry-4

95-um J,,, 0.69 mm h,,, 10.56-mm D,,,
640+140 wppm Cy, no radial hydrides (RHCF = 0)
246x29 wppm H within inner 63% of cladding wall

Embrittlement at 20-90°C: high density of circumferential hydrides
(>800 wppm H locally)

HBU Zry-4 with 30015 wppm C,, exhibited high ductility at RT

B HBU Zry-4 Results after Simulated Drying/Storage

140 MPa @ 400°C and 615+82 wppm H:
RHCF = 16+4%, DBTT = 55°C

110 MPa @ 400°C and 520+90 wppm H:
RHCF = 9£5%, DBTT < 20°C
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High C, (>800 wppm)
Brittle at RT

Low Cy (<500 wppm)
Ductile at RT
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Baseline HBU Zry-4:
640140 wppm H

41



_{/i-“\ U.S. DEPARTMENT OF

D Effects of Hydrogen Content on HBU
WENERGY Zry-4 (As-Irradiated) Ductility at RT

Nuclear Energy

12 | |
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