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Net Infiltration at
Yucca Mountain
Outline

History and timeline: development of
conceptual and numerical models

Development of the conceptual model
— Processes

— Observations

— Spatial distribution

Conceptual model

Numerical testing of processes

— Submodels

— Bucket model approach

Distributed results: 1996 milestone
report

1996-> 1999 refinements
Results and future climate
Supporting data
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Winograd supports thick unsaturated zone with no infiltration

Roseboom claims 30-60 ft of soil over bedrock is the same thing
No soil at Yucca Mtn so nonwelded tuff would provide capillary barrier

Natural infiltration (neutron holes), artificial infiltration, matrix properties
Regional meteorology program added

Neutron hole drilling resumes (deeper and new topographic positions)
Integration of infiltration processes with 3D site scale model
Geostatistical precipitation maps of Yucca Mountain

Unsaturated zone flux estimates in boreholes

Artificial infiltration 2> surficial materials, humerical modeling added
Distributed flux map based on rock properties

Distributed flux map based on infiltration model (INFIL V 1.0)
Infiltration milestone report documenting INFIL V 1.0

Analysis and Modeling Report documenting INFIL V 2.0



Net Infiltration at
Yucca Mountain

« Water balance processes and
strategy

* Precipitation — ET — drainage
+ Astorage = 0

* The sporadic nature of
precipitation in the arid

southwest allows us to use
this approach




Conventional Wisdom
about Infiltration in Arid
Environments in Late
80’s

Channels in desert
environment thought to be
the most important process
for infiltration

Neutron holes
concentrated In channels

Deep boreholes In
channels



Developing a Conceptual
Model of Net Infiltration at
Yucca Mountain

 (Observations

— Water content profiles (soll
and bedrock)

— Climatic trends

— Subsurface flow and water
potential gradients at bedrock
interface

— Differences between
geomorphic and topographic
locations

— Soil depth

— Spatial distribution of surficial
bedrock properties




Neutron Logging s

Moisture
monitoring in 99 il
neutron-access
boreholes monthly
for over 10 years
became one of the
most useful tools
for evaluating the
spatial processes
contributing to net
infiltration and ) N
percolation " Waercontent |
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Neutron Logging

Influence of soil depth and
bedrock on infiltration

Channels
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Influence of geomorphic position
on depth of penetration
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Neutron Logging

Influence of bedrock
properties on infiltration
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Welded, fractured,
10 percent porosity
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north-facing
sideslope
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higher energy loads,
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' Varlable nature of cllmatlc conditions over 13 yers had a large
§ effect on the ability to conceptualize processes at any single time.

N ® Conditions as a result of extended drought in late 80’s impacted F'
50|I and bedrock mmsture .and vegetatlon







Depth, In meters

Infiltration at Borehole UZN #1

Active channel, 8-meter deep soil
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Depth, in meters

Infiltration at Borehole UZN-15

(/5 cm soll over 2 m lower porosity fractured bedrock,
underlain by 10 m high porosity fractured bedrock)

1993 1994 1995
0.10 0.20 0.30

Water Content, in meters/meter



=
(g8

0.15

VOLUMETRIC WATER CONTENT

[

Calculation of Flux from
Neutron Borehole Data
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Flux calculated for 80 neutron
boreholes compared to soll thickness

Flux in boreholes

Alluvium (mmiyr) Number
thickness Standard of
(meters) Mean deviation samples
0.0-05 44 17 29
05-1.0 28 14 14
1.0-3.0 12 10 8
3.0-6.0 6 9 13
65.0-18.0 1 7 28
All depths 19 29 89
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Calculating flux from Heat Dissipation Probe data
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Soil Water Potential
Heat Dissipation Probes at N-15

Pagany Wash Matric Potentials
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Bedrock Geologic Map of the Central Block
Yucca Mountain, Nevada (Day and others, 1998)
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¢ Surficial geology, measured rock properties,
| and subsurface moisture conditions, provided

'A% spatial information for distributing flux estimates
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« QOriginal 3-D site

scale model grid with
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Highlights fault
controlled channels

Integration with 3-D
site scale model
development began
In 1991, encouraging
spatially distributed
estimates of upper
boundary conditions
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w from core properties
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(Flint and Flint, 1994)




Spatially distributed net infiltration
1995 using neutron hole data and
sttistical methods
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Net Infiltration at
Yucca Mountain

« Factors controlling
Infiltration
— Precipitation

— Soll thickness
+ Soll porosity
« Drainage characteristics

— Bedrock permeability
— Evapotranspiration



Conceptual Schematic of
Water-Balance Processes and Subsurface Flow
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Additional observations to
refine the conceptual
model of infiltration

+ QObservations leading to
spatial distribution of
parameters and processes

— Spatial variability of storms
— Show melt

— North vs south facing slopes
— Deterministic rock properties

+ Observations leading to
model process refinement

— Rooting depths exposed after
flooding

— Plant water potential in fractured
rock




Net Infiltration at
Yucca Mountain

Conceptual understanding

L — — Arid conditions=> net infiltration is an
Infrequent occurrence

— Particularly wet winters allow for near
saturated conditions at the soil-
bedrock interface—> fracture flow and
deep penetration of infiltrated water
below the zone of evapotranspiration

— Deep soils have sufficient soll water
storage capacity to retain most
precipitation in the root zone for
evapotranspiration

— Runoff accumulates and infiltrates
enough water to overcome the
storage capacity of the root zone In
deeper soils allowing for deep
{:)enetratlon of infiltrated water below

he zone of evapotranspiration




Numerical Modeling
of Infiltration

* Apply the physics of the
water-balance processes to
arid climates

« Define the physical setting
— Slope
— Aspect
— Elevation
— Soll properties
— Rock properties
— Vegetation



Numerical Modeling

of Infiltration

Converting the conceptual
model to a
numerical/mathematical model

« Solutions to the water-balance
equation require sub modeling:

* Precipitation
Infiltration
Evapotranspiration
Percolation
Runoff/Runon



Precipitation model
(Temporal and Spatial Distribution)

« Use surrogate rainfall (limited records)

« 4JA (Low elevation NTS station, lower bound
modern climate)

« Area 12 (High elevation NTS station, upper
bound modern climate)

« Or, use a stochastic simulator (longer term)
« 3rd order two-state Markov chain
« To determine the occurrence of daily
precipitation
« Monthly transition probabilities

« Modified, exponential cumulative-probability-
distribution function

« To determine the magnitude of daily
precipitation
« Four seasonal probability distributions
« Conditioned on local rainfall data

| = Scaled to local elevation using the regional
J relation between precipitation and elevation

> s |
22 USGS

Co-located raingages
at all 29 neutron holes



Evapotranspiration
Model

Modified Priestley-Taylor Equation
— AE = &S/(S+y)(R, — G)

» d=a(l-exp(-b*6,)) where a=1.26, and
b=10

+ SHS+y)=f(T,)
Net Radiation (R,)
- Rn = Kd'Ku+Ld_Lu
» K=K, "albedo
+ L,L,=56697E-8<Ea-.98)*T.*
— Ea=.0000092*T, (Swinbank equation)
Ground Heat (G)
— G =-20+.386(R,)
Solar radiation model (K,)
— SOLRAD (Flint and Childs, 1987)

— Detailed site geometry and atmospheric
properties
+ slope, aspect, elevation, topographic
shading (direct and diffuse radiation)
* ozone, precipitable water, atmospheric

turbidity, circumsolar-diffuse radiation,
ground albedo
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confirm numerical
representation of
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Infiltration and
Runoff Model

Infiltration

« All precipitation is modeled as
Infiltration except when storage
capacity of the soll is exceeded and
runoff is generated (1996 version)

« Precipitation, runon, and snowmelt
Infiltrate unless they exceed the
saturated hydraulic conductivity or
porosity, then runoff is generated
(1999 version)

« 2 hour summer storm events
s « 12 hour winter storm events
. Runoff
#» -+ Counted then removed (1996 version)
+ Routed downstream (1999 version)

+ Kinematic overland flow

+ Reinfiltrates downstream or
continues to runoff




Percolation

Soll drains to field capacity (=-0.01MPa)
— Uniformly distributed through the soil profile {(1996)

+ Excess water (water above field capacity) is allowed to
infilirate in the bedrock at the saturated conductivity of
the bedrock

+ VWater in excess of the bedrock saturated conductivity
is held in storage in a “bucket” until the next day
— |f the bucket storage is exceeded then the excess in
runoff (bucket storage capacity) is the soil depth times
soil porosity-field capacity
— Forward cascade moves down one soil layer at a
time (1999)

+ Layer 1 drains to field capacity and the remaining
water is added to the residual water in layer 2, then
water in excess is moved to layer 3 and so on to
bedrock

+ Excess water (water above field capacity) at the
bedrock interface percolates into the bedrock at the
saturated conductivity of the bedrock

— Reverse cascade moves excess water up one soil
layer at a time (1999)

« Water reaching the surface becomes runoff

— Bedrock root zone up to 2 m thick captured some
infiltration (40 mm storage)



Numerical Modeling
of Infiltration

Calibrate the model by matching
observations and data

Run the model for a range of
geomorphic or topographic
positions, soils, and climates to
see how the system responds in
areas that we have no data and
under climates that have not been
observed

Test the model against data
iIndependent of the calibration
data



Relation of Infiltration to Precipitation
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Net Infiltration Model 1996 Results
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Surface

B Fluxes:
+- 1 close up of

modeled net
Infiltration




Corroborative Datasets
and Observations

« Darcy flux calculations in
the PTn

Tritium

¢ C-14

Thermal profiles
Chloride mass balance

Other chemistry
techniques



Flux from Thermal Modeling,

Comparison of Flux from
Thermal Modeling with
Net Infiltration
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Flux, mm{yr

Comparison of Flux from
Chloride Mass Balance
with Net Infiltration
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Comparison of percolation
fluxes estimated by various

methods
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Refinements to the

Numerical Model
1996 - 1999

« Surface routing
« Multiple soll layers

« Model calibration
using streamflow

« Future climate
scenarios




Layered Root Zone Water Balance Model
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Modern Day Climate

Estimated Precipitation
Rate (mm/yr)




Modern Day Climate

Estimated Net Infiltration
Rate (mm/yr)
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sSummary of Results for Modern Climate

* Infiltration model domain (123.7 km?)

— Mean precipitation 188.5 mm/yr (1996 results 170 mm/yr)
— Mean net infiltration 3.6 mm/yr (1996 results 4.5 mm/yr)

« 1999 UZ flow and transport model domain (38.7 km?)
— Mean precipitation 190.6 mm/yr
— Mean net infiltration 4.6 mm/yr

» 1999 design potential repository area (4.7 km?)

— Mean precipitation 196.9 mm/yr
— Mean net infiltration 4.7 mm/yr

a USGS

erlmncd for § cRamaing work



Long Term Future
Climate

Estimated Precipitation
Rate (mm/yr)
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Long Term Future
Climate

Estimated Net Infiltration
Rate (mm/yr)
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sSummary of Results for Long Term
Future Climate

* Infiltration model domain (123.7 km?)

— Mean precipitation 316.1 mm/yr
— Mean net infiltration 13.4 mm/yr

« 1999 UZ flow and transport model domain (38.7 km>2)
— Mean precipitation 317.8 mm/yr

— Mean net infiltration 17.8 mm/yr
* 1999 design potential repository area (4.7 km?)

— Mean precipitation 323.1 mm/yr
— Mean net infiltration 19.8 mm/yr

a USGS

erlmncd for § cRamaing work



Results of net infiltration studies at Yucca Mountain are
described in:

'“ L‘" C ; L -~ e -._...-.-: Al Iy
Yucca Mountaln Area, Nevada
USGS Milestone Report 3GUI623M, September 1996

[ [ e i el
TR 1 1 1 =8 | -
ration 1or tne

Simulation of Net Infiltration for Modern and Potential
Future Climates

Analysis and Modeling Report ANL-NBS-HS-000032,
Draft November 1999, Approved June 2000




Summary

Field observations and measurements made
throughout the wettest and driest periods of climate
cycles were necessary to establish a conceptual model
of infiltration

The conceptual model was converted to a numerical
model and calibrated to borehole and streamflow data

The model results are in agreement with thermal
analyses, chloride mass balance calculations, and
other isotopic approaches

Single infiltration events may exceed 100-200 mm in a
month; 6 major events occurred from 1980-1995

Primary controls on net infiltration are precipitation, soil
water storage and bedrock permeability

Grid-based deterministic models provide a good
method to spatially distribute calculated infiltration for
past, present and future climates







