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Source-Term Model Concepts
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General Engineered Barrier System Design Features
and Materials and Natural Processes
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Waste Form Types

Waste Form Inventory
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UO,,, Corrosion and Uranyl Phase Paragenesis

Schoepite, Becquerelite, Compreignacite

Soddyite

Uranophane, Sklodowskite, Boltwoodite

Na Boltwoodite
Finch and Ewing (1992) Journal of Nuclear Materials ‘ | I | I | ‘ | ‘ |
Nat | | mi | . 100 200 300 400 500
° atural uranyl mineral paragenesis .
y parag Time (weeks)

is well defined from numerous
observations of uraninite alteration
in geologic systems
* Uranyl mineral relations observed in laboratory testing on UO, and
spent fuel parallel observations of natural alteration

Data from experiments, Argonne National Lab
Wronkiewicz, Bates, Gerding, Veleckis & Tani (1992): J. Nucl. Mater. 190, 107-127
Wronkiewicz, Bates, Wolf, & Buck (1996): J. Nucl. Mater. 238, 78-95

Finch, Buck, Finn & Bates (1999): MRS Proc. 556, 431-438
N
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Source-Term Model Integration,
Descriptions, and Technical Bases
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Connections within the Source-Term Model
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Degradation
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Spent Fuel Degradation Model

e Gap and Grain Boundary Instantaneous Release Fractions

Triangular Probability Distribution Functions of Instantaneous Release Fractions

137CS 129| 99TC QOSr

(%) (%) (%) (%)

Apex 3.63 11.24 0.102 0.09
Minimum 0.39 2.04 0.01b 0.02
Maximum 11.06 26.75 0.26 0.25

NOTE: @Rounded up from 0.06.
bChanged from zero to provide a nonzero minimum.

e Matrix Dissolution Rates Depend on Chemical Conditions
and Temperature (Flow Through Tests)
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Description of Commercial Spent Nuclear Fuel
(CSNF) Matrix Degradation Model

e Mass of exposed fuel depends on
cladding failure

Waste Package
Temperature

o Defective clad splits instantaneously
after waste package breach

cor Pm

Degradal‘ on

=

ip In Package

— Mass of fuel in split rod available

e Clad split area increases as fuel
alters to schoepite
(volume increases as rind forms)

— Porosity of rind treated as uncertain
(schoepite values)

— Alteration rind assumed saturated

+ Water volume into which
radionuclides dissolve

+ Diffusive transport path
e Radionuclides released via

— Instantaneous gap and grain boundary

— Matrix degradation

Unreacted UO2
M
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Spent Fuel Matrix Degradation

e e Overall rate depends on
£ 5 temperature, chemical conditions,
5 . @ CSNF Data
5 107 . @ U0, Data rf r
g 051 ‘BaseCaseModel Su ace a ea
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§ ool | | |
g o :I B * pH, oxygen fugacity
S ol — lf R 4 Lo~ — Under basic conditions
0.0028 i | b d e —>3s .
2N e T + oxygen fugacity, total
T om0 dissolved carbonate
Figure 6-3.

Comparison of the Base-Case Model (pCO; = 2.7) to the Input CSNF and UO; Data . FI OW'th rou g h teSti n g Of CO mmerc | al

10000 Spent Nuclear Fuel (CSNF)
dissolution and UO, dissolution at
. . various conditions
1,000 -

% ‘ 7 . e Provides rate radionuclides are

100 potentially available for release

e Concentrations resulting from
10

degradation are calculated with
the rind water volume for

Years

— comparison to limitations from
i solubility controls
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Np Solubility Models Considered

e Pure Phase Models (thermodynamic data — OECD/NEA database)
— Np,O; — metastable Np(V) oxide
— NpO, — stable Np(IV) oxide
— Solution dominated by NpO,* species (reduction reaction for NpO,)
e Secondary Phase Models
— Coprecipitation of Np within uranyl alteration phases

— Expected that NpO,* would substitute for UO,** (Burns et al., 1997)
¢+ Coupled substitution for charge balance

— Proximal alteration phases (e.g., schoepite) do not appear effective

o Application to Expected System

— Use NpO, within the Package

+ Kinetic barriers for reduction not expected to be issue
» Numerous, massive reductants within package (waste form, steels)
» Np expected to be Np(IV) within CSNF
» Gradual increase of dissolved Np concentration from undersaturation

— Use Np,O. outside the package in the Invert
¢+ Hedge against uncertain precipitation kinetics of NpO,

N’
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Additional Support for NpO, Model

NpO, Formed by Humid Alteration of Np-doped
U,O, at Elevated Oxidation Conditions

(Finch, 2002)

— ~3 weeks at 150°C

— ~16 weeks at 90°C, with Np,O. (less overall reaction
progress of U,0g4 alteration at this temperature)

Precipitation of NpO, from Solution
(Roberts et al., 2003)
— ~3 Months at 200°C
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Comparison of Spent Fuel Drip and Batch
Dissolution Test Data and Solubility Models

o Spent fuel observations indicate

5.00

that reasonably long time (years) .. = Wheon 900 Bades2) ¢ Wheon 190 B3
should be available for 300 | ™~ | B0,
precipitation/formation of NpO, 201
5 1.00 -
e  Pure phase NpO, model £ oo
(at 25°C) is consistently higher ?;:
than observations from spent 500
fuel laboratory tests 400 A . 6 j
(at 25 and ~85-90°C) 500 o
-6.00 . _ . o g
— Most recent Argonne National ’ ’ i T ’ ’
(Fall 2004) reprosent o years of o B AR R B S e

drip tests
e Several recent studies indicate Np retention in uranyl solids — although
mechanism is uncertain
— Burns et al., (2004), Buck et al., (2004), Friese et al., (2004), Douglas et al., (2005)
e  Additional studies on Np in CSNF and NpO, formation kinetics

N‘
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Additional Studies
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Np and Pu Across CSNF Corrosion Front

1 | - e X-ray Absorption Spectroscopy
shows Np(IV) in the fuel matrix
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Normalized Absorption/Fluorescence

Normalized Absorption
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Np Precipitatio
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n from Np(V) Solution

 Roberts et al. 2003 @ 200°C
NpO,*(aqg) + 0.5H,0 = NpO,(s) + H*(aq) + 0.250,(9)

o X-ray absorption spectra of Np
solids indicates that solids isolated
after 21 days are Np(lV) precipitates
(200, 240, and 280°C)

e Mixed valence Np(IV)/Np(V)
precipitate observed at 150°C (XAS)
e Ongoing work addressing

— Homogenous and heterogeneous
precipitation at lower temperatures

— Temperature-dependent rate for
development of Np(IV) solids.

I&-
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Science and Technology
Source-Term
Targeted Thrust Projects
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Source Term Targeted Thrust

Research program is focused on the changing
conditions over time, identifying the critical
processes within each time interval, and with
attention to the radionuclides that are the major
contributors to dose

Directors:
— Rodney Ewing, University of Michigan
— Mark Peters, Argonne National Laboratory
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Selected Summary of Research Programs

e SNF dissolution mechanisms and rates
e Formation and properties of U%* secondary phases
e Waste form — waste package interactions

e Integration of in-package chemical and physical
processes
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Low pH Single Pass Flow-Through (SPFT
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Np>* Incorporation into Uranyl Phases

Structures without
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Burns et al. (2004): Radiochimica Acta 92, 151-159
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Becquerelite

Synthesis: 0.0825 g UO,, 0.125 g CaCO,, 2.07 g
H,O, 0.0016 g Np>*

Np>*in charge: 725 ppm
Np/U ratio: 0.0016 g/0.0687 g = 0.023
Np in crystal by count ratio: 800 ppm
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In Package Geochemistry

YMPW H,0 DD H,0

0 .
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Corrosion Products

J-13
Solution

Dilute
Water
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Typical SEM Micrographs Showing Complex Assemblage of
Corrosion Products that Formed on A-516 Carbon Steel Coupons

Reacted in J-13 Synthetic Groundwater after 109 Days E
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