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Outline

• Summary of Saturated Zone (SZ) Flow and 
Transport Modeling Approach and Abstraction

• Key Processes that Affect Releases

• Key Assumptions

• Key Uncertainties

• Affects of Spatial Distribution of Releases from the 
Unsaturated Zone (UZ)
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General Approach to SZ Flow and 
Transport Abstraction in TSPA

• 3-D SZ site-scale flow and transport models used to 
simulate radionuclide mass transport to the accessible 
environment from a point mass source 
(4 source regions below the repository)

• Convolution integral method will be used to couple 
radionuclide source term from the UZ with the SZ transport 
in the TSPA calculations

• Radionuclide concentration in groundwater source to the 
biosphere calculated by dividing radionuclide mass 
crossing the boundary of the accessible environment by the 
representative groundwater volume of 3,000 acre-ft/year

• Climate change incorporated by scaling radionuclide mass 
breakthrough curves in proportion to SZ flux changes

• Abstracted 1-D transport model used for radioactive decay 
chains
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SZ Site-Scale Flow and Transport Model
• Particle tracking method 

includes radionuclide 
transport processes of 
advection, dispersion, 
matrix diffusion in fractured 
volcanic units, and sorption 

• Simulated flow paths from 
the repository occur in the 
upper few hundred meters 
of the SZ

• Simulated flow paths cross 
the boundary of the 
accessible environment 
approximately 5 km west-
northwest of the highway 
intersection at Amargosa 
Valley
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Uncertainty Analysis
• Monte Carlo analysis is conducted by sampling 

uncertain parameters using the Latin Hypercube 
sampling method

• Multiple simulations (200 realizations) of 
radionuclide transport in the SZ are produced 
using these uncertain parameter vectors in the 3-D 
SZ Site-Scale Transport Model

• Radionuclide transport simulation results consist 
of radionuclide mass breakthrough curves

• The resulting “library” of breakthrough curves will 
be used in the TSPA model for probabilistic risk 
assessment analyses via the convolution integral 
method
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Key Processes – Advection of 
Groundwater

• Advective flow of groundwater is conceptualized to 
occur through the relatively limited volume of 
fracture networks in the volcanic rocks of the SZ

• Groundwater flow is more uniformly distributed in 
the porous medium of the alluvium, with some 
channelization occurring in more permeable strata

• Simulated groundwater specific discharge 
generally increases along the flow path from 
beneath the repository to the boundary of the 
accessible environment due to convergent 
groundwater flow

• Specific discharge is a function of the local 
hydraulic gradient, permeability, anisotropy in 
permeability, and temperature
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Key Processes – Advection of 
Groundwater (Continued)

from Geldon et al. (2002)

Volcanic Units

Alluvium
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Key Processes – Advection of 
Groundwater (Continued)

• Breakthrough curves from 
Monte Carlo SZ transport 
simulations and sampling all 
uncertain parameters shown 
with black lines

• Transport simulation using the 
90th percentile  of groundwater 
flow rate (and median values for 
other uncertain parameters) 
shown with solid red line

• Transport simulation using the 
10th percentile of groundwater 
flow rate shown with dashed red 
line

• Uncertainty in advection 
encompasses a significant 
portion of overall uncertainty in 
radionuclide transport rates

1 10 100 1000 10000
Time (years)

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
M

as
s

Note: Breakthrough curves are for a continuous source
and do not include radioactive decay or sorption.  Results 
are scaled for glacial-transition climatic conditions. 
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Key Processes – Radioactive Decay
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Note: Breakthrough curves are for a continuous source.
Results are scaled for glacial-transition climatic 
conditions. 

No Decay
With Decay – 99Tc 

(Half Life = 213000 years) 
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Key Processes – Radioactive Decay 
(Continued)

Note: Breakthrough curves are for a continuous source.
Results are scaled for glacial-transition climatic 
conditions. 

No Decay
With Decay – 137Cs 

(Half Life = 30.1 years) 
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Key Processes – Climate Change

• The scaling factors of groundwater specific 
discharge in the SZ for monsoonal and glacial-
transition climate states are 2.7 and 3.9, 
respectively

• These scaling factors are based on the ratios of 
average infiltration in the UZ site-scale flow model 
for these climate states

• The scaling factor for the glacial-transition climate 
is corroborated by steady-state flow simulations 
using the Death Valley regional groundwater flow 
model
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Key Processes – Matrix Diffusion

• What is known about matrix diffusion
– Extensive database of laboratory-scale studies and 

measurements of effective diffusion coefficient in 
volcanic rock matrix

– Field-scale demonstration of the matrix diffusion 
process in cross-hole tracer tests at the C-wells

• Uncertainties in the matrix diffusion process
– Uncertainty in channelization of groundwater flow 

(effective fracture spacing) in fractured volcanic units

– Uncertainty in flow porosity in fractured volcanic rocks

– Uncertainty in effective diffusion coefficient



Department of Energy   Office of Civilian Radioactive Waste Management
13YMArnold_NWTRB_020106.ppt

Key Processes – Matrix Diffusion 
(Continued)

C-Wells Multiple-Tracer
Test in Prow Pass Tuff Laboratory Diffusion Cell 

Test – Prow Pass Tuff

PFBA – pentafluorobenzoic acid
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Sensitivity to Matrix Diffusion

• Transport simulations using 
expected (median) values 
for uncertain parameters, 
isotropic horizontal 
permeability, and present-
day climatic conditions

• Radionuclide mass 
breakthrough curves at the 
boundary of the accessible 
environment

• Expected-value case 
includes significant matrix 
diffusion, but a majority of 
mass arrives at times closer 
to the minimum diffusion 
case
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Note: Breakthrough curves are for a continuous source
and do not include radioactive decay.
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Sensitivity to Matrix Diffusion
and Sorption

• Transport simulations for 
moderately sorbing 
neptunium show additional 
retardation due to the 
sorptive capacity of the rock 
matrix

• Sorption in the volcanic rock 
matrix amplifies the 
retardation effects of matrix 
diffusion

• For expected parameter 
values, sorption in the 
alluvium provides the 
majority of the retardation of 
neptunium

Note: Breakthrough curves are for a continuous source
and do not include radioactive decay.

10 100 1000 10000 100000 1000000
Time (years)

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
M

as
s

Non-sorbing Species
(Expected Case)

Neptunium
(Sorption-Volcanics)

Neptunium
(Sorption-Volcanics
and Alluvium)



Department of Energy   Office of Civilian Radioactive Waste Management
16YMArnold_NWTRB_020106.ppt

Sensitivity to Matrix Diffusion
and Sorption (Continued)

• Transport simulations for 
highly sorbing plutonium 
show significantly greater 
retardation than for 
neptunium due to the 
sorptive capacity of the rock 
matrix

• For expected parameter 
values, sorption in the 
alluvium provides additional 
retardation of plutonium, 
particularly for mass that 
arrives before 50% of the 
breakthrough

Note: Breakthrough curves are for a continuous source
and do not include radioactive decay.
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Key Processes – Sorption
Conceptual Model

• Local equilibrium between radionuclides in the 
aqueous phase and sorption onto aquifer material 
(sorption reactions are rapid and reversible)

• Linear relationship between radionuclide mass 
sorbed on the solid phase and mass in the aqueous 
phase (Kd approach)

• Sorption reactions are influenced by local chemical 
conditions

– Water chemistry (pH, Eh, Conc. CO3
2-, etc.)

– Rock types (Devitrified and zeolitic tuffs, alluvium)
– Radionuclide concentrations

• Scaling and uncertainties considered with regard to 
these factors

• Oxidizing conditions are assumed in the SZ
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Key Processes – Sorption
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Key Processes – Sorption
(Continued)
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Key Processes – Sorption
(Continued)
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• Breakthrough curves from Monte 
Carlo simulations of neptunium 
transport and sampling all 
uncertain parameters shown with 
black lines

• Transport simulation using the 
10th percentile of Np sorption 
coefficient (and median values for 
other uncertain parameters) 
shown with solid red line

• Transport simulation using the 
90th percentile of Np sorption 
coefficient shown with dashed red 
line

• Uncertainty in Np sorption 
encompasses a moderate portion 
of overall uncertainty in 
radionuclide transport rates

Note: Breakthrough curves are for a continuous source
and do not include radioactive decay .  Results are scaled 
for glacial-transition climatic conditions. 
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Key Assumptions

• Steady-state groundwater flow simulated in the SZ
• Instantaneous change in SZ groundwater flux with 

climate change; no change in flow paths
• Matrix diffusion from uniformly spaced, parallel 

fractures in the fractured volcanic units, as 
implemented in the Sudicky and Frind (1982) analytical 
solution

• Equilibrium, linear sorption occurs in tuff matrix and 
alluvium

• No sorption of solutes on fracture surfaces/coatings
• Radionuclide mass from fracture and matrix flow in UZ 

is input to SZ in fractures

Current information forms the basis for the 
following assumptions:
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Key Assumptions
(Continued)

• Oxidizing conditions are assumed in the SZ with regard 
to sorption coefficients and solubility limits of redox-
sensitive radionuclides (e.g., 99Tc and 237Np)

• For transport of radionuclides reversibly attached to 
colloids, local equilibrium is assumed among the 
colloids, the aqueous phase, and the aquifer material

• For radionuclides irreversibly attached to colloids, it is 
assumed there will be no desorption of radionuclides 
from the colloids

• Colloids are subject to attachment and detachment 
from the mineral grains, but no permanent filtration of 
colloids occurs
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Parameter Uncertainties
• Groundwater flow and geological uncertainty:

- Groundwater specific discharge
- Horizontal anisotropy in permeability (fractured tuff)
- Alluvium – tuff contact in the subsurface

• Radionuclide transport uncertainty:
- Matrix diffusion in fractured tuff

Flowing interval spacing
Effective diffusion coefficient in tuff matrix
Flow porosity in tuff

- Sorption coefficients (tuff matrix and alluvium)
- Dispersivity (longitudinal, transverse horizontal and vertical)
- Effective porosity of alluvium
- Source location
- Colloid retardation factor (tuff and alluvium)
- Sorption coefficients onto colloids
- Groundwater colloid concentration
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Uncertainty in Specific Discharge

• Uncertainty in specific 
discharge is based on results 
of the SZ expert elicitation and 
more recent well testing at the 
alluvial tracer complex

• The discrete cumulative 
distribution function used for 
uncertainty has 80% of 
probability between 1/3 and 3 
times the best estimate of 
specific discharge

• The tails of the distribution are 
taken from the SZ expert 
elicitation
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Spatial Distribution of Releases

Note: Breakthrough curves are for a continuous source
and do not include radioactive decay or sorption.  
Transport simulations use median parameter values and 
are for present-day climatic conditions.  Colors of 
breakthrough curves correspond to the colors of particle 
paths shown from four source locations shown on map.
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Conclusions
• The calibrated 3-D SZ site-scale flow and transport 

models form the basis for abstracted radionuclide 
transport simulations in the TSPA

• Several key processes and their impacts on 
releases of radionuclide mass from the SZ are 
discussed:
– Advection of groundwater
– Radioactive decay
– Climate change
– Matrix diffusion
– Sorption

• Spatial variations of releases to the SZ do not have 
large impacts on simulated releases from the SZ, 
relative to other uncertainties
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