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Outline

Future climate projections
Percolation and runoff for net infiltration

Representation of geology for unsaturated zone
(UZ) modeling

Representing flow and transport in a fractured rock
Flow in unsaturated fractures

Episodic transient flow; fast flow paths

Large-scale lateral flow
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Outline

(Continued)

e Matrix-dominated flow in the CHnv
e Matrix diffusion
e Radionuclide source term; drift shadow concept

e Transport time of a passive tracer

e Conclusions
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Processes for Unsaturated Zone Flow

Climate
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Infiltration

Flow In fractured rock
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Future Climate Projections

e Climate projections are
based on the concept of
climate cycles
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Future Climate Projections

(Continued)

C N A D A

—

A
Spokane : !
Rosalia\é’i! L
St. John I L Montana
WaShlngtor,: \-5_.,

EXPLANATION
& Meteorological Stations

A Yucca Mountain

i Yucca Mountain regional |4
" meteorological stations

=]
pn—

Figure 15. Meteorological Stations Selected (Table 2) to Represent Future Climate States at Yucca

Mountain, Nevada

g/ Department of Energy » Office of Civilian Radioactive Waste Management
#  YMHouseworth_Bodvarsson-NWTRB_03/9-10/04

Temperature and
precipitation ranges
associated with the Owens
Lake data are used to select
analog climate sites to
represent future climates.

The lower and upper bound
climate analogs define
climate uncertainty
propagated into infiltration,
UZ flow, and UZ transport.




Percolation and Runoff for Net Infiltration

e Net infiltration Is treated
using a water balance
model

e Percolation treated as a
vertical, piston flow
process Saturated Zone

e Runoff patterns treated
as a geometric process;
active channels
saturated for fixed
durations based on
runoff observations
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Percolation and Runoff for Net Infiltration

(Continued)

Average present-day net
Infiltration ranges from
approximately 1 to

11 mm/yr, with an
expected value of about
4 mm/yr

— Comparisons with chloride
concentrations in the
Exploratory Studies Facility
(ESF) and temperatures
profiles predicted by the UZ
flow model support the
Infiltration models results

— Additional evidence from
Isotopic data, secondary
calcite deposition, and
saturated zone chloride data
support the range of

predicted infiltration
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Hydrogeologic Variability and Structure

e Geology defined by: . —
— Extensive surface mapping s -3
and trench studies >
—  Stratigraphy of tuff layers from ¢ | madiibiiN
over 60 deep boreholes and g
more than 10 km of tunnels & ;o i
o §‘ : 4 E E ég% 9415. . ?5|32 . .9 3766 1883 o
5 5o {nﬂf "EE = ?;é Horizontal Distance (m) from point (E170,700, N238,748)
1400 1 § g % g Z‘é
. o L This information, combined with
£ o ] detailed hydrologic measurements,
* = has resulted in 32 hydrogeologic
i — units; properties within units are
= homogeneous, except for zeolitic
700 - | T | I_ | T T T I | alteratlon

Horizontal Distance (m)

* E
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Hydrogeologic Variability and Structure

(Continued)

e Major faults are included
ont . LR as vertical or inclined
g SN0 R discrete features

o N © el | . "Toe" Fault

N s o TEEDEE e Vertical grid dimension
agsiee . Ee ranges from 1to 20 m; 5 m
S K In the repository

"SolJFat" Fault

£ e Horizontal grid dimensions
in the repository are on the
order of 100 m
e Grid sensitivity studies
ABRESEO. i ==l varying grid dimensions
Sioa s SR T T by a factor of 4 resulted In

Sanhe variations in transport
TR times of 10 to 20 percent
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Matrix Flux

Fracture Flux

Hydrogeologic Variability and Structure

Finer-scale 2-D s
cross-sectional model

Heterogeneity in k;, k.,

and o, within
hydrogeologic units
Investigated
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The data shown in these figures are based on a model that is appropriately conservative
for TSPA analyses and not intended to represent expected breakthrough of radionuclides
or groundwater travel time for unsaturated zone portion of the Yucca Mountain flow system.
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Representing Flow and
Transport in Fractured Rock wauesor

problem.

Equwalent Underestimates
continuum Capillary . Dual- f-m interaction
‘ disequilibrium ‘ Dual-porosity permeability for transient
expected due to low problems.
permeability and ‘ : Matrix
Fracture- Matrix | Unsaturated Fracture = VBtnx permeability ‘ ‘
conditions of matrix. indicates that
Perched and pore global flow will ‘ -
waters appear to be occur, and in Fracire (= St
in chemical _ some units
Fraciure - Matrix | disequilibrium. Facture == MHINX | gominate
. . : Fracture = Matrix
| Discret ‘ Multiple interacting
f ISCrete continua
o | fracture . . [
Density of fracturing | . . Multiple interacting
o= ¢ Fracture | o= Z)ef|?rt]|evre)rtgbtlhe?nsca|e Fracture Matrix Matrix = continua (I\/IINC) not
Matrix | suggests that a g?pnﬁ?ile;ni(}fre
=l continuum approach _ : J
\ is appropriate Fracture Matrix Matrix — Steady-flow, but may
‘ ' be important for
transport.
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Representing Flow and
Transport in Fractured Rock

(Continued)

e  MINC method ShOwnN tO result el s il el
In slower transport as : g
compared with dual- : :
permeability. The true N — 3
differences may not be as : e -
pronounced because: o = 3

— MINC model not calibrated E E 2
— Differences tend to be i 04 o
exaggerated in 2-D as compared ] :
with 3-D ‘: -

80 LALLM ML

Time (years)

The data shown in this figure are based on a model that is appropriately conservative
for TSPA analyses and not intended to represent expected breakthrough of radionuclides
or groundwater travel time for unsaturated zone portion of the Yucca Mountain flow system
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Flow In Unsaturated Fractures

a) ; -

B AN e
Small-scale discrete SR 5 e e T
fracture network models (B =i i imp e
have been used to - P e |
investigate Darcy flow R T
models for fractures. T

'] 4;‘11‘ == | g

LA L »
Capillary pressure in the
fractures match the van @ op
Genuchten model. ok, "
Relative permeability gop Cw T -l
predictions found to be Ll A —
lower in general, but
match well at low o 7
saturations.

0.4 6
Effective saturation
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Flow In Unsaturated Fractures

(Continued)

Small-scale field tests

were conducted with a
disk infiltrometer to
= Investigate fracture
3l capillary pressure-
Sol relative permeability
| characteristics.
Note that the test data is
B —— limited to higher
T i reeeeas i, © Saturations.
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Effects of Flow Focusing
In a Fracture Network

Preferential flow in single
fractures and fracture
networks has been JFEN D =i
observed in laboratory
tests and field tests. it

To account for this
phenomenon, the ATt e e e
van Genuchten model for

fractures was modified N
using the active fracture
Mo d el . _ 1: " 4=0 (V-G relation)
Active fracture _g7

hypothesis a " “e ;
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Effects of Flow Focusing in a Fracture Network

(Continued)  1.E-01

1.E-02

e The active fracture model
Introduces a fracture-matrix LE-03 -
interaction factor, R, that *

1.E-04 -

accounts for: "
] 1.E-05 —qg=05
— Wetted fracture-matrix g=009
Interface area 1.E-06 ‘ ‘
. ] 1.E-03 1.E-02 1.E-01
— Flowing fracture spacing e
- - ' | Calibratc;d gamma (base case 2z ]
. RadlonUCIIde transport = —_——- Changedgammao:TSwunits) y 7
== - g’ 0.80 — Changed gamma of units below the repository [/
sensitivity analyses show ¢ 7
significant effects of the
active-fracture parameter I d
g /
E 0.20 7
0.00 —| -*i/ —
The data shown in this figure are based on a model that is appropriately conservative lél I_gn lél I_gn % % %
for TSPA analyses and not intended to represent expected breakthrough of radionuclides & bl & & t & &
or groundwater travel time for unsaturated zone portion of the Yucca Mountain flow system. Time (year)
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Effects of Flow Focusing
In a Fracture Network

(Continued)

e The active fracture model

SD-12 .
— Is used to match water
e saturation and potential
1200~~~ T % data. A reduced fracture-
[P - — e matrix interaction is
— 1100 S t : ) N
S - Fasom essential to fit the existing
g 1000HT G 7 recresia data
2 [ TSw_ ,
e T S o e Independent evidence for
soof T T T M the active fracture concept
N T comes from the frequency
00 D2 W4 Os ©E 4B of secondary calcite
Saturation : :
coatings on fractures in
the TSw
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Mountain Scale Flow Patterns

Capillary Barrier
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Episodic Transient Flow

East-West Cross Section at Northing 235119 meters

Lo Adapted from GFM3.1
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Episodic Transient Flow and

Fast Flow Paths
1400 SD-12
e Current data does not
support fast flow paths for 101 eme
significant amounts of B B
ﬂOW é 1100 - . ’:
— Carbon-14 data indicates 5 1000 |
ages of pore water that oo | .
generally range from 1,000 .
to 10,000 years 800 ‘ ‘
100 1000 10000 100000
— Chlorine-36 data remain Age (¥rs)
controversial, but suggest conice | Newwgarp | wononm s g,
fast flow paths are o0 ¥
associated with faults 2l o |5 | |
through the PTn or low- s Al g B &g e
angle features in the TSw s M- 8 -5 48 8 Y| e e
— The lack of bomb-pulse S 0 N | [
chlorine-36 in perched water [l SARUCE TR I |y et
suggests that the quantity of LIPS PRI S i Fo]
fast flow is small ESF Station (x 100m)
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239000 |

238000 -

Large-Scale Lateral Flow

East-West Cross Sectlion through Borehole UZ-14
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Adapted from GFM3.1
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Large-Scale Lateral Flow

(Continued)
Lateral diversion results in "

partial diversion and Bsotq - T
decreases with increasing | o
infiltration. i o
Chloride data provides Sl —

evidence for lateral o —
d IVerS i O n i n th e PTn ] Infiltration Rate (mm/year)
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Large-Scale Lateral Flow

(Continued)

e Existence of perched water
bodies infers that fracture
permeability below
perched water is low

e Lateral flow due to
permeability barriers is
expected below the
repository at perched
water bodies and
low-permeability zeolitic

. Easy m 171000
Interfaces )
. . - . - - . 100% Liquid Saturation Isosurface 173000
e Partial diversion minimizes —
contact with zeolitic tuff (2x vertical exaggeration)
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Large-Scale Lateral Flow

(Continued)

Model results suggest flow focusing into faults

Promont Day iitration Meamy vertical flux for preq_mA at repository layer vertical flux for preq_mA at bottom boundary
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Large-Scale Lateral Flow

(Continued)
Effects of lateral flow in the PTn 1
on radionuclide transport 0gof ——rmmac
P 2 VF T heeme
predictions are small. S F T iemem
1 B 08 = —— . ::g:A::pM

- 8 | S
'g [ |=—— paf8-tr1 - ; 0.7 w= == = preqmB_npM
— 09F -+ pago-tr2 g .
- - |~ PaLi-r1 s c 5
ERY S § 208E
T -+ pal2-tr2 x 3 :
g - = pami-tr :- 5 05 -
§ o7f [ : g oSk
5 " et &oaf
S 06F hautu2 o F
e " — pauz-tri g -
é 0.5 Y pau2-ir2 = 03 —
s | 2 _F
= - L 02F
0 - g E
g 03k w01
E E 0 - ~ T nl"‘ fl I]Illll Ll L LLLLLY
g Ozp 10 10 10 10 10° 10° 10°
.0 - Time (years)
T 01F . .
£ ¢ Lateral diversion below the

10° repository has an impact on
transport, but variations between
realistic models are small.

TIME (years)

The data shown in these figures are based on a model that is appropriately conservative
for TSPA analyses and not intended to represent expected breakthrough of radionuclides
or groundwater travel time for unsaturated zone portion of the Yucca Mountain flow system.
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Process for Unsaturated Zone Transport

o All processes pertaining to i, D de e

Eva
Ftact red Be druck Run On/Runoff  Transpi

flow are important to s T R
transport e = sy

/unwmq!:ﬂow“
o “{ e a4,
e Flow behavior in the CHnv

Repositol
300m Below Surface

e Matrix diffusion

e Radionuclide source term;
drift shadow o

¢ Sor pti on s
e Colloids : |

S|
\ Fault
N ',x'\' - \..\-"\I
i 4 Ly W as
Advection s v Ji .
Imbibition s | A @l
| \ - ;
Matrix - .I P ractu
Fracture Seepage Into Drift

Groundwater seeps into drift
Fracture-Matrix or is diverted amu nd outside
Interaction of drift in fracture network. sl abxS eps
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Busted Butte Transport Test

e Studies: S
Shi

— Inject multi-tracer Viosnins
solutions into borehole  Loma——so—=oo
arrays in and above ’
Calico Hills vitric tuff

— Track plume migrations
with periodic ground
penetrating radar
Imaging between
borehole pairs

@ Injection Boreholes
#® Collection Boreholes
= Tomography Boreholes

* E
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Busted Butte Transport Test

(Continued)

Phase 1A tests showing 90 cm
fluoroscene plume.

Calico Hills vitric tuff has
simple porous medium
characteristics with well-
defined plume pattern.

Phase 2 injection tests
monitored using ground-
penetrating radar.

The spread of the flow
pattern is indicative of a
porous media flow process.

WL oCrwin.doe.gov
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Transport Tests at Alcove 1

e Transport tests were
conducted between the
ground surface and

Alcove 1 in the TCw unit. Bl Sber
Lithium bromide was used e :
as the tracer e |
30 m
e In addition to transport, |
flow and seepage test P -
results were obtained T |
| Collection
e Water uptake rates were Grid
on the order of 30 mm/day; Alcove 1

Indicates that surface
bedrock permeability is
substantially lower than
values in the rock interior

M Department of Energy = Office of Civilian Radioactive Waste Management
SRS YMHouseworth_Bodvarsson-NWTRB_03/9-10/04




Transport Tests at Alcove 1

(Continued)

o MINC model used for transient flow and transport experiment. Hydrologic
properties calibrated to seepage data

o Results indicate matrix diffusion plays a significant role in transport
through densely welded tuffs. Fracture-matrix interaction appears to be
larger than initial estimates

600 B 800
applied tracer concentration
——=—— observed seepage tracer concentration
500 [ Data 00 . dispersivity=0.0, tortuosity = 0.75
Simulation r/\- [ memmmimimmme dispersivity=30.0, tortuosity = 0.75
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> =
T 400 s I
5 S 500 :’_W
g f g
S 300 £ 400 |-
> | :
g S
% B — 300 -
& 200 g |
n i o
= 200+
100 - i
i 100 |-
07\ L Nl [ R I R | 0 wa’h§‘-~l~b‘ [ N N N L1
0 200 _ 400 600 800 0 100 200 300 400 500
Time [day] Time (days)
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Radionuclide Source Term
and Drift Shadow

B - e Modeling studies have
et s shown that a drift shadow
will form when drift
seepage is diverted

e Transport initiated in drift
shadow is much slower
due to two effects:

— Radionuclides leaving the
drift predominantly enter
the rock matrix

— Radionuclides enter a zone
in which fracture flow is
negligible

Cad Filo: s35+0020 fig AT2KI08




Radionuclide Source Term
and Drift Shadow

(Continued)

1:

209F T rmaw

Results indicate that greatly $°F T=—omE

0.7 F B
reduced transport rates are 3
expected for transport initiated £
. . kv =
In rock matrix regardless of g E
the specific flow dynamics. foof
§o2f
e F
im;—
b 10 10 ET T T

Time (years)

The data shown in this figure are based on a model that is appropriately conservative
for TSPA analyses and not intended to represent expected breakthrough of radionuclides
or groundwater travel time for unsaturated zone portion of the Yucca Mountain flow

system.
* =
WAL seRAmLdoe. g ov
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Transport Time of a Passive Tracer

Transport time for a passive tracer is sensitive to:

1.00 :

Calibrated gamma (base case) e ’/
_ L
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The data shown in these figures are based on a model that is 0.4 matrix continua
appropriately conservative for TSPA analyses and not 0.3
intended to represent expected breakthrough of radionuclides '
or groundwater travel time for unsaturated zone portion of the 0.2
Yucca Mountain flow system. ;
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Conclusions

Climate projections based on climate cycles are supported by
paleoclimate data and correlations with earth orbital behavior

Predicted net infiltration rates using a water balance model are in
general agreement with independent estimates of flux through
the UZ using geochemical and borehole temperature methods

Representation of heterogeneity based on hydrogeologic units is
generally appropriate for flow and transport at the mountain scale

Dual-permeability method captures the main features of flow in
fractured rock but may underestimate f-m interaction for
radionuclide transport

Unsaturated flow in fractures using the van Genuchten
relationships appears to be adequate for low fracture saturations
expected under ambient flow conditions. However, this
conclusion is based mainly on modeling because data at low
water saturations is not available
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Conclusions

(Continued)

Active fracture model accounts for reduced fracture matrix
interaction and is qualitatively consistent with fracture coating
data

Episodic transient flow and fast flow paths appear to play a minor
role based on simulation results and isotopic data

Large-scale lateral flow in the PTn is consistent with chloride data
in the Exploratory Studies Facility

Matrix-dominated flow in the CHnv is consistent with hydrologic
properties and flow observations at Busted Butte

Matrix diffusion plays a significant role in transport through
welded tuffs as shown in Alcove 1 and Alcove 8-Niche 3 tests

Transport times are sensitive to infiltration, fracture-matrix
interaction, and initial conditions (initiation in fractures or matrix)
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Sensitivity to Matrix Diffusion
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The data shown in this figure are based on a model that is appropriately conservative
for TSPA analyses and not intended to represent expected breakthrough of radionuclides
or groundwater travel time for unsaturated zone portion of the Yucca Mountain flow system.
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Effects of Climate on Transport
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The data shown in this figure are based on a model that is appropriately conservative
for TSPA analyses and not intended to represent expected breakthrough of radionuclides
or groundwater travel time for unsaturated zone portion of the Yucca Mountain flow system.
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Transport Tests at Alcove 8-Niche 3

Transport tests are
being conducted >
between Alcove 8 in the @
TSw upper lithophysal }
unit and Niche 3, 20 m A
below, in the TSw pY
middle non-lithophysal gy 1
unit.

ECRB Cross Drift—._. = Fault

Results are available h |
from flow, seepage, and TN G L
transport tests along a { ‘
fault that extends

between Alcove 8 and

Niche 3. Ve

Water uptake rates
were on the order of N
25 mm/day. o
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Transport Tests at Alcove 8-Niche 3

(Continued)

Fault and rock mass fracture properties in the test bed flow
model are calibrated to water arrival times and seepage data.
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Transport Tests at Alcove 8-Niche 3

(Continued)

Tray 7

Lithium bromide and — e

|mLi{ciCeo)
| & Br (Cm-Ca)/(Co-Ca)

pentafluorbenzoic acid
tracers were used in the
transport tests. Diffusion
coefficients for the two
tracers differ by roughly a
factor of 4.
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Results indicate that matrix
= oy diffusion is an important factor
ot in transport.
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Busted Butte Transport
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Measured and predicted (calibrated)
breakthrough curves for Li and Br

Matrix K initial estimates for Li are 3.5 x 10° (m%/Kg) in TpTpvl and 8.8 x 10> (m3/Kg) inTpTpv2,
am.  Calibrated values are 5.5 x10# (m3/Kg) and 9.3 x104 (m3/Kg) respectively (1 m3/kg=10- ml/g)
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