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Outline

Overview of Engineered Barrier System (EBS)
Environments

EBS Process Components

— Thermal-Hydrologic (TH) Environment
— Chemical Environment

— Flow and Transport
Ongoing work

Summary
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Summary of Supplemental EBS Analyses

Process Model
(Section of Yucca

Reason For Supplemental Scientific

Model Or Analysis

Mountain Science Topic Of Supplemental Unquantified Update in Cooler Thermal
Key Attributes and Engineering Scientific Model Uncertainty Scientific Operating Mode | Section Of
Of System Report [DOE, 2001]) Or Analysis Analysis Information Analysis Vol.1
Long-Lived Water Diversion Multiscale thermal-hydrologic
Waste Package | Performance of EBS model, including effects of rock X XT 531
and Drip Shield | (4.2.3) dryout
Thermal property sets X X T 5.3.1
Effect of in-drift convection on
temperatures, humidities, invert X XT 532
saturations, and evaporation rates
Composition of liquid and gas
entering drift X XT 631
Evo_lu‘uon of in-drift chemical X XT 633
environment
Thermo-Hydro-Chemical model
comparison to plug-flow reactor XT 6.3.1
and fracture plugging experiment
Rockfall X 6.3.5
In-Drift Moisture Environment on surface of drip T 532
Distribution (4.2.5) shields and waste packages -
Condensation under drip shields 8.3.2
Evaporation of seepage 8.3.1
X XT 5392
Effect of breached drip shields or
waste package on seepage X X 833
\Waste package release flow X 834
geometry (flow-through, bathtub) -
Drip Shield Local chemical environment on
Degradation and surface of drip shields (including X T 731
Performance (4.2.4) Mg, Pb) and potential for initiating o
localized corrosion

T = Thermal Dependence
X = Reason topic was analyzed
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Summary of Supplemental EBS Analyses

(Continued)

Reason For Supplemental Scientific
Process Model N
(Section of Yucca Model Or Analysis
Mountain Science Topic Of Supplemental Unquantified Update in Cooler Thermal
Key Attributes and Engineering Scientific Model Uncertainty Scientific Operating Mode | Section Of
Of System Report [DOE, 2001]) Or Analysis Analysis Information Analysis Vol. 1
Limited Release | DHLW Degradation HLWV glass degradation rates
of and Performance X X XT 9.3.1
Radionuclides (4.2.6)
from the Dissolved Solubility of neptunium, thorium,
gngl_neered Radionuclide plutonium, and technetium X X X T 932
armers Concentrations (4.2.6)
Colloid-Associated Colloid mass concentrations
Radionuclide X 934
Concentrations (4.2.6)
In-Package Diffusion inside waste package X X X T 10.3.1
Radionuclide Transport pathway from inside
Transport (4.2.6) was‘teppacEage toﬁnver‘t X X 1032
Sorption inside waste package X X 10.3.4
EBS (Invert) Sorption in invert X X 10.3.4
Degradation and e :
Performance (4.2.7) Dn‘fus_lon lhr_o_ug.h |nve.rt X X T 10.3.3
Colloid stability in the invert X T 10.3.5
Microbial transport of colloids X X 10.3.6
T = Thermal Dependence
X = Reason topic was analyzed
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Engineered Barrier System Environments

Thermal loading and ventilation
Natural convection

Incoming water and gas modified by fluid-rock
Interactions

Chemical interactions among water, gas, and emplaced
EBS materials

Water flow through the EBS

Drip shield (DS) and waste package (WP) degradation
Waste form degradation

Radionuclide transport

Rock fall

et
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In-Drift Thermal Hydrologic Environment

Unsaturated-Zone Flow

* Climate

« Infiltration

* Hydrologic
properties

Subsurface Design
Waste Package Design

O —

Thermal Hydrologic
Environments

« Both Drift-Scale and
Mountain-Scale Effects Included

+ Waste Package Variability

+ Dual-Permeability Flow Model

» Active Fracture Model

Chemical Environments
(EBS environments subcomponent)

« Temperature and relative humidity at:
- Drift wall
- Drip shield
- Waste package
- Invert

« Water flow rate, water saturation, and
water evaporation rate at invert

« Water evaporation rate at drip
shield/waste package

Unsaturated Zone Flow
* Percolation flux above the drift

Waste Package and Drip Shield
Degradation

« Temperature and relative humidity at:
- Drip shield
- Waste package

Waste Form Degradation
* Temperature at waste package

Engineered Barrier System Transport
+ Liquid saturation in invert

abq0063G417.ai
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Supplemental Thermal Hydraulic Analysis

e High temperature operating mode (HTOM) and low
temperature mode (LTOM) have been analyzed

e Main difference between high temperature operating
mode (HTOM) and Total System Performance
Assessment for Site Recommendation (TSPA-SR)
Base Case is an updated estimate of thermal
conductivity for lithophysal hydrogeologic units

e Several uncertainties have been identified and
evaluated using multi-scale TH submodels to
determine their significance

et
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Key Thermal-Hydrologic Environment
Uncertainties Evaluated in SSPA Vol. 1

Model (Conceptual) Uncertainty Process Uncertainty Input Data Uncertainty
Use of effective thermal conductivity and
thermal radiation approaches
Porous media approximation of Hysteresis of imbibition Invert properties
comprehensive fluid dynamics processes
Use of single continuum versus DKM THM and THC changes to Host rock bulk permeability
approach for invert materials hydrologic properties
Neglecting dryout during ventilation Host rock thermal conductivity
Coupling of submodels Host rock heat capacity
Localized effects of seepage Heat output of waste packages
Neglecting fracture heterogeneity impacts Impacts of lithophysal porosity on
on seepage thermal conductivity
Neglecting effects of mountain-scale Wet and dry thermal conductivity
gas-phase convection
Effects of lithophysal porosity on vapor Duration of ventilation
storage

NOTE: DKM = dual permeability model; THM = thermal-hydrologic-mechanical; THC =
thermal-hydrologic-chemical.

O —
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IC

ty of In-Drift Thermal-Hydrolog

Performance to Uncertainties

Change from Base Case (HTOM or LTOM) Peak Postclosure Temperature, C

ITVI

Sens
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HTOM
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Impact of Uncertainty in Thermal
Conductivity on Drip Shield Temperature

Y M P Yucca Mountain Project/Preliminary Predecisional Draft Materials
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Waste Package Temperature Sensitivity to
Location and Waste Package Type

Location in Footprint Waste Package Type
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Relative Humidity Sensitivity to Location

Location in Footprint
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Invert Evaporation Sensitivity to Location
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Sensitivity of Waste Package Temperature

to Infiltration Rate and Operating Mode
(All Waste Package Types and Locations)

1.0

e WP Iinthe HTOM

— Exhibit larger
variability

0.8

— Stronger
dependence on
1 infiltration flux

0.6

CCDEF for all Waste Packages

Mean Infiltration Flux
---------------- Lower Infiltration Flux
1 | — — — — Upper Infiltration Flux

60 80 100 120 140 160 180 200
Peak Waste Package Temperature (°C)  Bink7a
e
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Impact of Thermal Operating Mode

WP Temperatures

— HTOM peak WP temperatures range from 126 - 185°C vs
65 - 91°C for LTOM (mean infiltration)

— Temperatures sensitive to thermal K, more so for HTOM

— HTOM exhibits larger variability in WP temperatures and
stronger dependence on infiltration flux

WP RH tends to be lower in the LTOM with less
variability and dependence on infiltration

i e —
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Impact of Thermal Operating Mode

(Continued)

Invert saturation

— Invert dry up to 1000 yrs depending on location in HTOM

— Saturation trends similar in both operating modes after
1000 yrs

Invert evaporation rate

— Tends to be more variable and higher in HTOM after
1000 yrs

e
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Multiple Lines of Evidence

Fully 3-dimensional NUFT simulations

Single Heater Test

Drift-scale test

Large-block test

Thermal-properties from laboratory and field tests
1/4-scale DS condensation test

1/4-scale ventilation and natural convection tests

Thermal hydrological chemical laboratory tests

R~ —
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Engineered Barrier System
Chemical Environment

EBS Chemical Environments

Incoming Gas, water, colloids *-aia‘"

In-Drift

Near-Field Environment
= Incoming water compasition

* Incoming gas composition

* Incoming water rate

Eionueniss | /nputs
* Temperature

* Relative humidity

* Incoming water flow rate

« Water evaporation rate

« Evaporation rate

Design

* Repository
« Waste Package

A

3
Gas Z';“B

. |
Water-solids chemistry 6
Colloids

o
Microbial communities \f;?\
Water-invert chemistry 66
Water-cement chemistry 66

Corrosion chemistry

Outputs

On Drip Shield

* Water composition
* Microbe quantity

On Waste Package
* Water composition
* Microbe guantity

In Invert

= Water composition
« Colloid Stability
and concentration

abqD063G365.ai
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Supplemental Engineered Barrier System
Chemical Environment Model

Main improvement for the TSPA-SR supplemental

chemical environment model is the propagation of
uncertainty associated with the composition of water

and gas entering the emplacement drifts

— Different PCO, soil horizon starting conditions (high PCO,
and low PCO, cases)

— HTOM versus LTOM

BSC Graphics Presentations_YMMacKinnon_0620-2101.ppt 19
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Key Chemical Environment Uncertainties

Key Uncertainty Not Included in S&ER

Model Improvements

Included in Supplemental TSPA

Models Discussed in SSPA Model
\Vol. 1

Compoasition of liquid and gas entering drifts Yes Yes
Seepage/Invert mixing and interactions Yes No
Trace elemental compoasitions and effects on Yes No
chemistry

Radionuclide sorption onto corrasion products Yes Yes
Cement leachate effects on in-drift chemistry Yes No
Generation of calloids from corrosion products Yes No

et
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Effects of Evaporation and CO, Fugacity on pH

12

11 -

10 ppm CO,

Tuff Pore -Water Type

5 -
J-13-Water Type
4 ‘ ‘ |
1 10 100 1000 10000
Concentration Factor
e
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Abstraction Results for High Temperature and
High Carbon Dioxide Partial Pressure in the
Tptpll Lithology for Matrix Imbibition

Extended Cool| Transition to
Preclosure Boiling Cool Down Down Ambient Ambient
(0- (51- (1,501- (4,001- (25,001- (100,001-
50 yr) 1,500 yr) 4,000 yr) 25,000 yr) 100,000 yr) | 1,000,000 yr)

Actual THC 5.00 250.01 2,000.00 10,000.00 50,001.50 Averaged
Model Run Time
(yn
Temperature 75.02 120.68 93.89 53.96 27.44 23.26
)
PCO2 (v.frac) 1.56E-03 2.15E-05 4.60E-05 3.40E-03 9.44E-04 7.13E-04
pH 7.86 8.27 8.04 7.70 8.33 8.43
Ca (mol/L) 8.75E-04 2.30E-02 1.37E-02 1.97E-03 2.01E-03 2.13E-03
Mg (mol/L) 3.54E-04 2.87E-02 2.45E-03 1.50E-05 1.35E-04 1.53E-04
Na (mol/L) 4.40E-03 2.24E-01 3.96E-03 3.71E-03 5.02E-03 4.82E-03
Cl (mol/L) 3.26E-03 2.24E-01 1.60E-02 3.27E-03 3.31E-03 3.31E-03
SiO2(ag) (mol/L) 3.78E-03 7.10E-02 6.32E-03 3.40E-03 1.52E-03 1.46E-03
HCO3 (mol/L) 8.30E-04 2.35E-05 4.13E-05 1.73E-03 3.15E-03 3.19E-03
SO4 (Mol/L) 1.17E-03 5.35E-02 9.67E-03 1.19E-03 1.20E-03 1.21E-03
K (mol/L) 4.39E-04 4.20E-02 6.11E-04 2.12E-04 1.24E-04 1.03E-04
AlO2 (mol/L) 1.24E-08 3.93E-12 2.59E-08 2.05E-09 7.25E-10 5.06E-10
F (mol/L) 5.53E-04 4.18E-04 2.15E-04 3.66E-04 3.24E-04 3.04E-04
HFeO2 (mol/L) 5.47E-11 2.81E-09 8.49E-10 4.36E-11 4.53E-12 1.86E-12

Source: Data derived from THC simulations thc6_htl (Table 6.3.1.5-1) and thc6_16_25_g4_amb
(DTN: LBO011DSTTHCR1.001 [DIRS 154759]) as archived in Jolley (2001 [DIRS 154762]).

e
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pH for Higher CO, Case
Pore Water - Type Seepage

25K - 100K yr

Evaporation

Condensation

0.001 0.01 0.1

|
|
1

10

1 - Q°/Q°® (also known as 1 - R%Y)

e ——
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Impact of Thermal Operating Mode

e Two general types of waters

— Matrix water (pH goes down with evaporative
concentration)

— Fracture water (pH goes up with evaporative concentration)

e Matrix water used in supplemental TSPA

HTOM will tend to have a lower pH and higher ionic
strength because of higher evaporation rates

e —
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Multiple Lines of Evidence

Formation of natural brines and evaporites
Laboratory evaporation studies

Handbook solubility values of soluble salts
Waters mixing in oceans, estuaries, and lakes

Thermal-hydrological-chemical laboratory column
experiments

e —
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Supplemental Engineered Barrier System
Flow and Transport Model

e Main improvements for the TSPA-SR supplemental
EBS flow and transport model are

— Seepage evaporation at the DS
— DS and WP flux models
— In-package diffusion

— Radionuclide sorption

O —
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Key Flow and Transport Uncertainties

Key Uncertainty Not Included in Model Improvements Included in Supplemental
S&ER Models Discussed in SSPA TSPA Model
Volume 1
Seepage Evaporation Yes Yes
Drip shield and waste package fluxes Yes Yes
Drip shield condensation Yes No
Bath-tub flow Yes No
Diffusion in waste package Yes Yes
Diffusion from waste package to invert Yes No
Diffusion through invert Yes Yes
Microbial sorption and transport Yes No
e —
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Impact of Thermal Operating Mode
on Engineered Barrier System Transport

EBS Flow
— Evaporation rates are a function of thermal response

EBS transport
— Diffusion coefficient is a direct function of temperature

— Diffusion coefficient is a function of the time-dependent
saturation

— Adsorption of water vapor is a function of RH

BSC Graphics Presentations_YMMacKinnon_0620-2101.ppt

Y M P Yucca Mountain Project/Preliminary Predecisional Draft Materials

28



Multiple Lines of Evidence

EBS 1/4-scale tests

— Condensation beneath DS
— Flux through DS

Laboratory data for diffusivity of unsaturated crushed
tuff

Laboratory column transport and sorption tests

Published investigations of colloid characteristics,
behavior, and transport properties

Field data on colloid facilitated transport at Nevada
Test Site and Los Alamos National Laboratory

e ST —
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Summary

Improved understanding of uncertainties associated
with EBS environments and processes

Improved understanding will help plan future work

Conclusions regarding the impact of thermal
operating modes on performance will be discussed
In Mike Wilson’s and Jim Blink’s talks

I
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